Electronic Journal of Polish Agricultural Universities (EJPAU) founded by all Polish Agriculture Universities presents original papers and review articles relevant to all aspects of agricultural sciences. It is target for persons working both in science and industry,regulatory agencies or teaching in agricultural sector. Covered by IFIS Publishing (Food Science and Technology Abstracts), ELSEVIER Science - Food Science and Technology Program, CAS USA (Chemical Abstracts), CABI Publishing UK and ALPSP (Association of Learned and Professional Society Publisher - full membership). Presented in the Master List of Thomson ISI.
2011
Volume 14
Issue 2
Topic:
Horticulture
ELECTRONIC
JOURNAL OF
POLISH
AGRICULTURAL
UNIVERSITIES
Dyduch J. , Najda A. 2011. YIELDING AND QUALITY OF GARLIC LEAVES. PART II. PRIMARY METABOLITES, EJPAU 14(2), #10.
Available Online: http://www.ejpau.media.pl/volume14/issue2/art-10.html

YIELDING AND QUALITY OF GARLIC LEAVES. PART II. PRIMARY METABOLITES

Jan Dyduch, Agnieszka Najda
Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Poland

 

ABSTRACT

Studies carried out in 2006–2009 dealt with the evaluation of primary metabolites content in winter cultivated garlic leaves (local ecotype "R") depending on reproductive material used (cloves and air bulbils) as well as cultivation locality (high unheated foil tunnel, field). The content of dry matter, (13.08–17.76%), total sugars (4.56–6.60%), L-ascorbic acid (16.21–19.66 mg·100 g-1), chlorophyll (1.012–1.601 mg·kg-1) and crude fiber (1.35–2.18%) in leaves was determined.

Key words: garlic, Allium sativum, growing method, primary metabolites content in the leaves.

INTRODUCTION

Plant metabolites are compounds of differentiated properties and chemical structure which are formed in live plant organisms as a result of metabolic changes. Due to different ways of formation and the biochemical and physiological functions performed in an organism, so-called primary and secondary are distinguished. Primary metabolites perform the basic physiological functions in plants. They constitute the principal energetic and structural material of cells; they can also fulfill the function of spare materials. They include saccharides (carbohydrates), fats, proteins as well as enzymes, chlorophyll and vitamins [16,41,50]. Secondary metabolites as a side effect of secondary metabolism are derived from the compounds produced as a result of primary metabolism.

In recent years, the literature of the subject has shown an increased interest in foliate vegetables, which belong to biologically most valuable ones. Studies on the chemical composition and the content of primary metabolites (sugars, proteins, fats, vitamins, crude fiber) in those plants concern such vegetables as garden parsley [19,20], celery and celeriac [7,38,40], chard [22], corn salad [23,37], other foliate vegetables [14,51] and the chive of onion, shallot and garlic [3,4,6,10,11,13,25,27,28,35,36,42,43,44,45,46,47]. They are a very precious source of mineral salts and energetic, structural and biological compounds.

Dietary and medicinal properties of garlic were already known in ancient times and contemporary photochemical studies fully confirmed the multidirectional effect of compounds occurring in this plant [12,15,18,25,26,33,39,48,49]. The most popular manner of utilizing garlic is to use the heads and cloves of garlic, which are valuable in respect of their chemical composition, both for fresh consumption and in the form of additives to food, pickled products, etc. It is also used in pharmaceutical industry. The cultivation includes both the ecotypes that produce and do not produce generative shoots and which are planted in autumn or spring [5,6,8,9,17,30,31,32]. Seasonal consumption of garlic can be partly leveled off by the cultivation of this plant for leaf crop in the spring-summer period, both from field cultivations and from accelerated cultivations in rooms. Both Polish and foreign studies conducted so far point to the possibility of obtaining satisfactory and profitable yields of garlic leaves with valuable chemical composition [3,4,7,8,9,28,29,34,35,52].

The purpose of the present paper was to estimate the chemical composition of garlic leaves (primary metabolites) depending on the kind of the reproductive material (cloves, air bulbils) and the applied method of cultivation (field, unheated foil tunnel).

MATERIAL AND METHODS

Winter cultivated garlic (local ecotype "R") grown from clove setting and inflorescence bulbils in a field and a high foil tunnel for early harvest of leaves was the subject of the present study. The agrotechnical experiment was carried out in 2006–2009 at The Experimental Farm Felin (University of Life Sciences in Lublin). The soil under garlic cultivation was prepared in accordance with common agrotechnical recommendations. Celery was grown as a forecrop for garlic during the entire experiment. Garlic cloves (from 2.0 to 2.5 g each) and air bulbils (6–10 mm in diameter), after being treated with mordant Funaben T, were planted in autumn (the end of October) of 2006, 2007, and 2008 into plots of 1.6 m2 area each (0.8 × 2.0 m), at 20 × 5 cm spacing (40 plants per row = 100 plants∙m-2) in four replications. Garlic was harvested just before generative shoots production, i.e. on 17 May 2007, 19 May 2008, and 16 May 2009 in a foil tunnel, as well as on 1 June 2007, 6 June 2008, and 2 June 2009 in field production. The content of dry matter, total sugars, vitamin C, chlorophyll and crude fiber was determined directly after the garlic leaves harvest [1,2,21].

Garlic grown in a foil tunnel was harvested by 14 to 18 days earlier as compared with that grown in the field, regardless of the type of the reproductive material.
The measurement results were subjected to statistical processing using variance analysis and Tukey's confidence intervals at the significance level of p = 0.05.

RESULTS

Dry weight (Table 1) was within the range from 13.08% to 17.76%. It was significantly higher when the cloves were planted in a foil tunnel and it also depended on the year of studies.

Table 1. Content of dry weight and ascorbic acid in garlic plants grown for leaves harvest

Planting material

Place of cultivation

Dry weight
(%)

Ascorbic acid
(mg∙100 g-1 fresh mass)

2007

2008

2009

mean

2007

2008

2009

mean

Cloves

unheated foil tunnel

17.40

17.01

17.76

17.39

17.53

16.23

17.26

17.01

field

15.21

15.21

15.56

15.33

19.55

19.01

19.66

19.41

mean

16.31

16.11

16.66

16.36

18.54

17.62

18.46

18.21

Air bulbils

unheated foil tunnel

14.70

14.38

14.91

14.66

16.47

16.21

16.72

16.47

field

13.12

13.08

13.41

13.20

17.58

16.97

17.66

17.40

mean

13.91

13.73

14.16

13.93

17.02

16.59

17.19

16.93

Mean

unheated foil tunnel

16.05

15.69

16.34

16.03

17.00

16.22

16.99

16.74

field

14.17

14.14

14.49

14.27

18.56

17.99

18.66

18.40

mean

15.11

14.92

15.41

15.15

17.78

17.10

17.82

17.57

LSD0.05
  planting material (A)
  place of cultivation (B)
  years (C)
  interaction (A×B×C)


1.021
1.307
0.092
0.934

 


1.103
0.511
0.035
0.861

L-ascorbic acid (Table 1) was within the range from 16.21 mg·100 g-1 to 19.66 mg·100 g-1 of fresh weight. It was significantly the highest in the combination where garlic cloves were planted directly in the field. The content of that substance was significantly related to the year of studies.

Chlorophyll (Table 2). Its content in garlic leaves ranged from 1.012 mg·kg-1 to 1.601 mg·kg-1 and was significantly related to the years and experimental factors. It was significantly the highest in the combination where plants obtained from cloves grew in the field.

Table 2. Content of chlorophyll A+B in garlic plants grown for leaves harvest

Planting material

Place of cultivation

Chlorophyll A+B (mg·kg-1)

2007

2008

2009

mean

Cloves

unheated foil tunnel

1.222

1.343

1.259

1.275

field

1.381

1.601

1.492

1.491

mean

1.302

1.472

1.375

1.384

Air bulbils

unheated foil tunnel

1.012

1.118

1.020

1.050

field

1.138

1.279

1.188

1.202

mean

1.075

1.199

1.103

1.125

Mean

unheated foil tunnel

1.117

1.231

1.140

1.162

field

1.259

1.440

1.339

1.346

mean

1.189

1.335

1.240

1.254

LSD0.05
planting material (A)
place of cultivation (B)
years (C)
interaction (A×B×C)


0.0152
0.0676
0.0234
0.1203

Total sugars (Table 3). Their content in leaves ranged from 4.56% to 6.60%. It was significantly the highest in the combination where garlic cloves were planted in a foil tunnel. The content of sugars was significantly modified by atmospheric conditions in particular years of studies.

Table 3. Content of total sugars and crude fibers in garlic plants grown for leaves harvest

Planting material

Place of cultivation

Total sugars
(%)

Crude fiber
(%)

2007

2008

2009

mean

2007

2008

2009

mean

Cloves

unheated foil tunnel

6.60

6.21

6.41

6.41

2.18

1.92

2.05

2.05

field

5.76

5.38

5.57

5.57

2.03

1.81

1.92

1.92

mean

6.18

5.79

5.99

5.99

2.10

1.86

1.98

1.98

Air bulbils

unheated foil tunnel

6.25

5.73

6.37

6.12

1.54

1.35

1.45

1.45

field

4.82

4.56

5.07

4.82

1.73

1.63

1.68

1.68

mean

5.53

5.14

5.72

5.47

1.64

1.49

1.57

1.57

Mean

unheated foil tunnel

6.42

5.97

6.39

6.26

1.86

1.63

1.75

1.75

field

5.29

4.97

5.32

5.19

1.88

1.72

1.80

1.80

mean

5.86

5.47

5.85

5.73

1.87

1.68

1.78

1.78

LSD0.05
  planting material (A)
  place of cultivation (B)
  years (C)
  interaction (A×B×C)


0.272
0.061
0.158
0.171

 


0.067
0.080
0.106
0.063

Crude fiber (Table 3) was established at the amount from 1.35% to 2.18%. Plants grown from cloves in field cultivation produced significantly the most of it in field cultivation. The content of crude fiber was also significantly modified in particular years.

DISCUSSION

Considering the biological value, garlic leaves can be compared to foliate vegetables. The green parts of plants are most abundant in nutrients and biological elements. Garlic leaves are characterized by a high content of dry weight and in this respect they are comparable to such vegetables as Brussels sprouts, kale, white cabbage, German turnip, savoy cabbage, parsley leaves. They are also rich in L-ascorbic acid. They contain it in the quantities comparable to such vegetables as parsnip, common turnip, lettuce, lentil and soybean sprouts and early potatoes. The content of chlorophyll has always been comparable with the amount occurring in the leaves of parsley, celery, dill and spinach [7,19,20,24,38,40].

Garlic leaves contain a similar amount of total sugars to that of chard, rutabaga, urad, kale, cauliflower, savoy cabbage, white and red cabbage, red pepper, leek and celeriac [22,24].

Considering the content of crude fiber, garlic leaves were comparable to potato, asparagus, celery, lettuce, tomato, Chinese cabbage, pumpkin, zucchini, onion and beet [7,24,38,40].

The manner of utilizing garlic leaves is similar to that of the leaves of other bulbous vegetables such as onion, chive, welsh onion or shallot. There are also similarities in their chemical composition as they contain considerable quantities of mineral salts, chlorophyll sugars, carotenoids of L-ascorbic acid and dietary fiber [10,29,34,35,46,47].

CONCLUSION

  1. Garlic leaves are a valuable foliate vegetable abundant in such elements as total sugars (4.56–6.60%), chlorophyll (1.012–1.601 mg·kg-1), L-ascorbic acid (16.21–19.66 mg·100 g-1) and crude fiber (1.35–2.18%).

  2. The supply of this vegetable in the market in spring can be an excellent supplement of scarce garlic cloves.

  3. Garlic leaves can come both from accelerated and field cultivations.

  4. Plants from an unheated foil tunnel could be picked up in the period between the 16 and 19 May, which is about 2 weeks earlier than those from field cultivation.

  5. Leaves that are more valuable as regards the content of primary metabolites are obtained from field cultivations from autumn planting of cloves.


REFERENCES

  1. Charłampowicz Z. 1966. Analizy przetworów z owoców, warzyw i grzybów [Analysis of processed, vegetables and mushrooms]. WPSL, Warszawa [in Polish].

  2. Chmielewska I. (ed.), 1955. Metody badania niektórych składników roślin [Methods of study of some constituents of plants], PWRiL, Warszawa [in Polish].

  3. Dyduch J., Najda A., 2001a. Estimation of the biological value of winter garlic leaves from early cultivation on bunch crop. Part I. Plants grown from clove planting. EJPAU, Horticulture 3, 2, www.ejpau.media.pl

  4. Dyduch J., Najda A., 2001b. Estimation of the biological value of winter garlic leaves from early cultivation on bunch crop. Part II. Plants grown from air bulbils planting. EJPAU, Horticulture 4, 2, www.ejpau.media.pl

  5. Dyduch J., Najda A., 2001c. Wpływ dorodności cebulek powietrznych czosnku strzałkującego (Allium sativum L.) na cechy morfologiczne i jakość wyrosłych z nich roślin [The effect of ripeness of air bulbils of shooting garlic (Allium sativum L.) on morphological properties and quality of plants grown from them]. Annales UMCS, sec. EEE, Horticultura, 9, 295–299 [in Polish].

  6. Dyduch J., Najda A., 2002. Characteristics of winter garlic (Allium sativum L.) plants grown up from air bulbs. Allium Improvement Newsletter, Madison USA, 12, 20–22.

  7. Dyduch J., Najda A., 2005. Zmiany zawartości suchej masy i kwasu L-akorbinowego w liściach roślin dwu odmian selera naciowego (Apium graveolens L. var. dulce Mill/Pers.) w zależności od wieku zbieranych roślin i ściółkowania gleby [Changes of the content of dry weight and L-ascorbic acid in the leaves of two cultivars of celery (Apium graveolens L. var. dulce Mill/Pers.) depending on the age of the plants and soil mulching]. Zesz. Nauk. AR we Wrocławiu, Rolnictwo 515, 111–119 [in Polish].

  8. Dyduch J., Najda A., Sawicka A., 2007a. Yielding of the winter garlic (Allium sativum L.) cultivated for spring harvest. Part I. Plants grown up from planting cloves. Allium Improvement Newsletter, Madison USA, 17, 7–11.

  9. Dyduch J., Najda A., Sawicka A., 2007b. Yielding of the winter garlic (Allium sativum L.) cultivated for spring harvest. Party II. Plants grown up from planting air bulbils. Allium Improvement Newsletter, Madison USA, 17, 11–16.

  10. Dyduch J., Najda A., 2008. Plon i jakość liści czosnku uzyskanych z sadzenia cebulek powietrznych w uprawie na zbiór wczesny [Yield and quality of garlic leaves obtained from planting air bulbils in the cultivation for early harvest]. Mat. Ogólnop. Nauk. Konf. Warzyw. nt. "Postęp w technologii uprawy warzyw cebulowych". Skierniewice, 37–38 [in Polish].

  11. Dyduch J., Najda A., 2010. Yield and Quality of Leaves of Garlic. Part I. Yield and their Structure. EJPAU, Horticulture 13, 4, www.ejpau.media.pl

  12. Grudziński J.P., Frankiewicz-Jozko A., Bany J., 2001. Diallyl sulfide – a flavour component from garlic (Allium sativum L.) attenuates lipid peroxidation in mice infected with Trichuella spiralis. Phyto-Med., 8(3), 174–177.

  13. Gruszecki R., Tendaj M., 2002. The effect of bulbs planting time and use of flat covers on growth and yield of shallot grown for the harvest with the fresh green shoots. Veget. Crops Res. Bull. 57, 23–28.

  14. Grzeszczuk M., Jadczak D., 2009. The estimation of biological value of some species of spice herbs. ISHS Acta Hort., 830, 681–686.

  15. Hasik J., 1988. Nowe poglądy na temat przeciwmiażdżycowego działania czosnku [New views on anti-sclerotic properties of garlic]. Herba. Pol., 44(2), 148–150 [in Polish].

  16. Hanczakowski P., Koreleski J., Wolski T., 2001. Składniki pokarmowe i antyodżywcze występujące w roślinach [Nutrient and anti-nutrient elements in plants]. Instytut Zootechniki, Kraków [in Polish].

  17. Jenderek M., 1998. Rozmnażanie generatywne czosnku (Allium sativum L.) [Generative reproduction of garlic] Zesz. Nauk. AR Kraków, Sesja Naukowa 1, 57, 141–145 [in Polish].

  18. Kędzia A., 2000. Działanie olejku czosnkowego na bakterie beztlenowe wyodrębnione z jamy ustnej i górnych dróg oddechowych [The effect of garlic oil on anaerobes isolated from the oral cavity and upper respiratory tracks]. Postępy Fitot. 1, www.borgis.pl/czytelnia/pf/2000/01/05.php [in Polish].

  19. Kołota E., Winiarska S., 2004. The influence of the method of transplanting and plant covers on yielding of leafy type of parsley. Veg. Crops Res. Bull., 61, 61–67.

  20. Kołota E., Winiarska S., Adamczewska-Sowińska K., Biesiada A., 2011. The effect of genetic and agronomic factors on the yield and composition of leafy parsley. Hort. Technol. (in press).

  21. Korenman I.M., 1973. Analiza fitochemiczna. Metody oznaczania związków organicznych [Phytochemical analysis. Methods for the determination of organic compounds]. WNT, Warszawa [in Polish].

  22. Krężel J., 2005. Przydatność wybranych odmian buraka ćwikłowego do uprawy na zbiór pęczkowy do przechowywania i przetwórstwa [Usefulness of selected cultivars of beetroot for the cultivation for bunch-harvest for store and processing]. Zesz. Nauk AR we Wrocławiu 515, 325–332 [in Polish].

  23. Krężel J., Kołota E., 2005. Wpływ wybranych czynników agrotechnicznych na plonowanie roszponki zbieranej w okresie jesiennym i po przezimowaniu [The effect of selected agrotechnical factors on the yielding of corn salad in autum and after wintering]. Zesz. Nauk AR we Wrocławiu 515, 315–323 [in Polish].

  24. Kunachowicz H., Nadolna I., Przygoda B., Iwanow K., 2005. Tabele składu i wartości odżywczej żywności [Tables of the composition and nutrient content of food]. PZWL, Warszawa [in Polish].

  25. Lutomski J., 2001. Fascynacja czosnkiem – wczoraj i dziś [Fascination with garlic – yesterday and today]. Postępy Fitoterapii, 1, 7–14 [in Polish].

  26. Maidment D., Dembny Z., Watts D., 2001. The antibacterial activity of 12 Allium agains Escherichia coli. Nutrition & Food Sci., 31, 4/5, 238–241.

  27. Mysiak B. Tendaj M., 2006. Content of flavonoids  in some Allium species grown for green bunching. Veg. Crops Res. Bull., 65, 105–110.

  28. Najda A., Dyduch J., 2008. Aktywność antyoksydacyjna i skład ekstraktów z liści czosnku (Allium sativum L.) w zależności od miejsca uprawy [Anti-oxidative activity and the content of extracts from garlic leaves depending on the place of cultivation]. Mat. Ogólnop. Nauk. Konf. Warzyw. nt. "Postęp w technologii uprawy warzyw cebulowych". Skierniewice, 53–54 [in Polish].

  29. Najda A., Dyduch J., 2008. Plon i jakość liści czosnku uzyskanych z sadzenia ząbków w uprawie na zbiór wczesny [Yield and quality of garlic leaves obtained from planting cloves in the cultivation for early harvest]. Mat. Ogólnop. Nauk. Konf. Warzyw. nt. "Postęp w technologii uprawy warzyw cebulowych". Skierniewice, 55–56 [in Polish].

  30. Orłowski M., Rekowska E., 1989. Wpływ masy ząbków oraz gęstości ich sadzenia na plon czosnku [The effect of garlic weight and the density of planting them on garlic yield]. Biul. Warz. Supl., 2, 85–89 [in Polish].

  31. Orłowski M., Rekowska E., Dobromilska R., 1994. The effect on the yield of garlic (Allium sativum L.) of autumn and spring planting using different methods of seedstalk trimming. Fol. Hortic. 6, 2, 79–89.

  32. Perłowska M., Kaniszewski S., 1992. Wpływ typu gleby i nawadniania na plon czosnku [The effect of the soil type and irrigation on garlic yield]. Biul. Warz., 38, 73–80 [in Polish].

  33. Rejeshkumar N.V., Kuttan R., 2001. Cancare – a herbal formulation inhibits chemically induced tumours in experimental animals. Indian J. Exp. Biol. 39(7), 654–659.

  34. Rekowska E., 2007. Wpływ osłon oraz sposobu sadzenia ząbków na plonowanie czosnku w uprawie na zbiór pęczkowy [The effect of covers and the manner of clove planting on garlic yielding in the cultivation for bunch-harvest]. Roczn. AR im. Augusta Cieszkowskiego w Poznaniu, Ogrodnictwo, 43, 589–593 [in Polish].

  35. Rekowska E., Skupień K., 2008. Wpływ niektórych czynników agrotechnicznych na plonowanie oraz skład chemiczny czosnku ozimego w uprawie na zbiór pęczkowy [The effect of some agrotechnical factors on the yielding and chemical composition of winter garlic in the cultivation for bunch-harvest]. Mat. Ogólnop. Nauk. Konf. Warzyw. nt.: "Postęp w technologii uprawy warzyw cebulowych". Skierniewice, 57–58 [in Polish].

  36. Rekowska E., Skupień K., 2009. The influence of selected agronomic practices on the yield and chemical composition of winter garlic. Veg. Crops Res. Bull. 70, 173–182.

  37. Rekowska E., Słodkowski P., 2005. Wpływ płaskiego okrycia roślin oraz normy siewu nasion na plonowanie roszponki [The effect of flat cover of plants and the norm of seed swing on corn salad yielding]. Veg. Crops Res. Bull. 70, 433–439 [in Polish].

  38. Rożek E., 2007. Content of some chemicals and essential oil of leaf celery Apium graveolens L. var. secalinum Alef. Herba Polonica, 53, 3, 213–217.

  39. Sendl A., 1995. Allium sativum and Allium ursinum. Part 1. Chemistry, analysis, history, botany. Gustaw Fisher Verlag, Stuttgart. Jena. New York. Phytomed., 4, 323–339.

  40. Siwek P., Libik A., 2005.Wpływ osłon z folii i włókniny w uprawie wczesnej selera naciowego na wielkość i jakość plonu [The effect of foil and nonwoven fabric on the size and quality of the yield]. Zesz. Nauk. AR we Wrocławiu, Rolnictwo, 515, 483–490 [in Polish].

  41. Strzelecka H., Kowalski J., 2000. Encyklopedia zielarstwa i ziołolecznictwa [Encyclopaedia of herbalism and herbal healing], PWN, Warszawa [in Polish].

  42. Tendaj M., Gruszecki R., 2002. Wpływ terminu sadzenia dymki i stosowania płaskich osłon na plon wczesnej cebuli z zielonym szczypiorem [The effect of the date of planting onion sets and flat cover on the early yield of onion with green chive]. Annales UMCS, Sect. EEE, Horticultura, 11, 61–69 [in Polish].

  43. Tendaj M., Badełek E., Mysiak B., 2006. Current research of onion production for early crops in Poland. Veg. Crops. Res. Bull., 64, 139–145.

  44. Tendaj M., Mysiak B., 2004. Przydatność cebul szalotki do pędzenia w warunkach szklarniowych [Usefulness of shallot for forcing in glasshouse conditions]. Folia Univ. Agric. Stetin. 239 Agricultura 95, 395–398 [in Polish].

  45. Tendaj M. Mysiak B., 2006. Plonowanie cebuli zwyczajnej i szalotki w uprawie na zbiór pęczkowy [The yielding of common onion and shallot in the cultivation for bunch-harvest]. Folia Hortic. Sup. 2, 186–191 [in Polish].

  46. Tendaj M., Mysiak B., 2007a. Plonowanie cebuli siedmiolatki (Allium fistulosum L.) w zależności od terminu sadzenia rozsady i stosowania płaskich osłon [The yielding of welsh onion depending on the date of seedling planting and the use of flat covers]. Annales UMCS, sec. EEE, Horticultura, 17(2), 5–10 [in Polish].

  47. Tendaj M., Mysiak B., 2007b. Usefulness of Japanese bunching onion (Allium fistulosum L.) for forcing in greenhouse. Acta Agrobotanica, 60(1), 143–146.

  48. Tsao ShyhMing, Yin MeiChin., 2001. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J. Med. Microbiol., 50, 7, 646–649.

  49. Usha K., Saroja S., 2001. Antitubercular potential of selected plant materials. J. Medic. Aromatic Plant Sci., 22/23, 182–184.

  50. Williamson G., 1999. Functional Foods – a new challenge for the food chemists. Proc. Euro Food Chem 10, Budapeszt. 1, 192.

  51. Zawiślak G., Dyduch J., 2005. Zawartość niektórych składników chemicznych w liściu podagrycznika pospolitego (Aegopodium podagraria L) [The content of certain chemical elements in the leaf of ground-elder]. Acta Agrobot. 60(1), 585–590 [in Polish].

  52. Żurawik A., Jadczak D., 2008. Wielkość i jakość plonu szczypiorku czosnkowego (Allium tuberosum Rottler ex Spreng.) w zależności od metody uprawy oraz liczby wysiewanych nasion lub liczby sadzonej rozsady w gnieździe [The size and quality of garlic chive depending on the method of cultivation and the number of sown seeds or the number of seedlings in a nest]. Zesz. Probl. Post. Nauk Rol., 527, 343–349 [in Polish].

 

Accepted for print: 14.04.2011


Jan Dyduch
Department of Vegetable Crops and Medicinal Plants,
University of Life Sciences in Lublin, Poland
58 Leszczyński Street, 20-068 Lublin, Poland
email: jan.dyduch@up.lublin.pl

Agnieszka Najda
Department of Vegetable Crops and Medicinal Plants,
University of Life Sciences in Lublin, Poland
Kr. Leszczyńskiego 58, 20-068 Lublin, Poland
email: agnieszka.najda@up.lublin.pl

Responses to this article, comments are invited and should be submitted within three months of the publication of the article. If accepted for publication, they will be published in the chapter headed 'Discussions' and hyperlinked to the article.