Issue 19 (1) #12

authors:

title: SOME ASPECTS OF THE CONCEPT, METHODOLOGY AND APPLICATION OF FARMING SYSTEM TYPOLOGY

keywords: farming systems, farm and area unit typology, farm household strategy, multivariate statistical methods, survey data

abstract: The paper reviews the farming system definition, methodology of farming system classification (typology) at farm or an area unit (mostly NUTS 5; NUTS – Nomenclature of Territorial Units for Statistics) level using different types of data (survey, census and remote sensing data), and importance of this typology. The diversity of farming systems is a crucial issue in several studies related to agro-ecosystem and environmental management, policy implementation and rural development. In performing the farming system typology within a farmland area, hierarchical classification of respective units has been adopted in which the three following levels of the classification are considered: 1) the main type level, 2) the more oriented type level, and 3) the specific type level. Study of the farming systems typology at a spatial scale can be performed using expert or statistical methods. The last are mainly used to distinguishing specific types of farming systems within a more oriented farming system. The sampling of farms considered for the farming system typology may rely on geographical or administrative stratification. Data on the sampled farms are collected through surveys of farmers or national and EU (European Union) databases (e.g., the FADN database; FADN – Farm Accountancy Data Network). For farming system diversity assessment at an area unit level, data should be aggregated at the respective area unit scale. Expert methods are based on knowledge of guide researchers or agricultural extension experts supported by land cover maps and recorded databases. Farming system types are inferred from the statistical characteristics of the sampled farms or the entire set of the area units, obtained through multivariate methods such principal component analysis and cluster analysis. Assessment of farming system diversity and typology have become increasingly important in recent years because of their usefulness in developing flexible policies for public interventions and for the effective planning, discussion and support of proper pathways for the development of multifunctional and sustainable agricultural and rural areas. Comprehensive approaches that take into consideration various sources of data and track spatio-temporal changes in farming systems are highly valuable tools for achieving the sustainable development of rural areas.

All time count: 1166 article

DayCount
2017-10-221
2017-10-205
2017-10-191
2017-10-182
2017-10-172
2017-10-162
2017-10-151
2017-10-141
2017-10-134
2017-10-123
2017-10-112
2017-10-103
2017-10-93
2017-10-84
2017-10-73
2017-10-64
2017-10-53
2017-10-32
2017-10-24
2017-10-13
2017-9-301
2017-9-291
2017-9-273
2017-9-263
2017-9-252
2017-9-242
2017-9-234
2017-9-224
2017-9-216
2017-9-202
2017-9-192
2017-9-173
2017-9-161
2017-9-151
2017-9-144
2017-9-135
2017-9-127
2017-9-102
2017-9-95
2017-9-81
2017-9-72
2017-9-64
2017-9-53
2017-9-47
2017-9-11
2017-8-312
2017-8-304
2017-8-294
2017-8-281
2017-8-274
2017-8-261
2017-8-254
2017-8-233
2017-8-222
2017-8-2110
2017-8-201
2017-8-193
2017-8-185
2017-8-174
2017-8-163
2017-8-152
2017-8-143
2017-8-123
2017-8-114
2017-8-102
2017-8-92
2017-8-88
2017-8-74
2017-8-62
2017-8-51
2017-8-44
2017-8-32
2017-8-22
2017-8-12
2017-7-301
2017-7-291
2017-7-273
2017-7-261
2017-7-251
2017-7-243
2017-7-212
2017-7-201
2017-7-192
2017-7-183
2017-7-171
2017-7-162
2017-7-155
2017-7-141
2017-7-135
2017-7-124
2017-7-113
2017-7-82
2017-7-75
2017-7-61
2017-7-46
2017-7-32
2017-7-22
2017-7-12
2017-6-291
2017-6-284
2017-6-271
2017-6-265
2017-6-255
2017-6-242
2017-6-231
2017-6-222
2017-6-211
2017-6-202
2017-6-186
2017-6-165
2017-6-152
2017-6-143
2017-6-133
2017-6-122
2017-6-111
2017-6-102
2017-6-92
2017-6-83
2017-6-73
2017-6-51
2017-6-45
2017-6-31
2017-5-312
2017-5-301
2017-5-292
2017-5-283
2017-5-274
2017-5-267
2017-5-253
2017-5-233
2017-5-221
2017-5-213
2017-5-201
2017-5-192
2017-5-188
2017-5-162
2017-5-152
2017-5-144
2017-5-132
2017-5-116
2017-5-104
2017-5-94
2017-5-83
2017-5-73
2017-5-62
2017-5-51
2017-5-41
2017-5-37
2017-5-22
2017-5-11
2017-4-302
2017-4-291
2017-4-281
2017-4-273
2017-4-263
2017-4-232
2017-4-223
2017-4-213
2017-4-206
2017-4-191
2017-4-173
2017-4-164
2017-4-153
2017-4-142
2017-4-123
2017-4-113
2017-4-102
2017-4-91
2017-4-74
2017-4-61
2017-4-54
2017-4-43
2017-4-32
2017-4-21
2017-3-314
2017-3-293
2017-3-287
2017-3-271
2017-3-262
2017-3-242
2017-3-233
2017-3-222
2017-3-203
2017-3-182
2017-3-172
2017-3-161
2017-3-153
2017-3-131
2017-3-111
2017-3-103
2017-3-92
2017-3-83
2017-3-73
2017-3-63
2017-3-51
2017-3-33
2017-3-21
2017-3-14
2017-2-286
2017-2-276
2017-2-264
2017-2-253
2017-2-242
2017-2-233
2017-2-225
2017-2-219
2017-2-191
2017-2-172
2017-2-161
2017-2-151
2017-2-143
2017-2-135
2017-2-122
2017-2-111
2017-2-104
2017-2-84
2017-2-73
2017-2-64
2017-2-42
2017-2-31
2017-2-23
2017-2-15
2017-1-312
2017-1-303
2017-1-291
2017-1-283
2017-1-274
2017-1-262
2017-1-252
2017-1-241
2017-1-231
2017-1-221
2017-1-213
2017-1-201
2017-1-196
2017-1-161
2017-1-152
2017-1-145
2017-1-131
2017-1-122
2017-1-111
2017-1-94
2017-1-82
2017-1-76
2017-1-52
2017-1-36
2017-1-23
2017-1-11
2016-12-291
2016-12-273
2016-12-261
2016-12-231
2016-12-213
2016-12-203
2016-12-192
2016-12-182
2016-12-171
2016-12-161
2016-12-152
2016-12-141
2016-12-133
2016-12-111
2016-12-93
2016-12-82
2016-12-71
2016-12-65
2016-12-52
2016-12-41
2016-12-34
2016-12-21
2016-12-11
2016-11-301
2016-11-293
2016-11-281
2016-11-271
2016-11-251
2016-11-243
2016-11-233
2016-11-222
2016-11-212
2016-11-191
2016-11-182
2016-11-174
2016-11-1611
2016-11-156
2016-11-143
2016-11-131
2016-11-121
2016-11-112
2016-11-101
2016-11-82
2016-11-72
2016-11-51
2016-11-41
2016-11-31
2016-11-24
2016-11-18
2016-10-311
2016-10-304
2016-10-291
2016-10-272
2016-10-263
2016-10-242
2016-10-223
2016-10-211
2016-10-201
2016-10-192
2016-10-183
2016-10-172
2016-10-153
2016-10-143
2016-10-131
2016-10-125
2016-10-113
2016-10-105
2016-10-64
2016-10-51
2016-10-31
2016-10-12
2016-9-301
2016-9-275
2016-9-254
2016-9-223
2016-9-211
2016-9-202
2016-9-192
2016-9-181
2016-9-173
2016-9-162
2016-9-151
2016-9-102
2016-9-93
2016-9-41
2016-9-24
2016-8-301
2016-8-294
2016-8-281
2016-8-261
2016-8-252
2016-8-231
2016-8-222
2016-8-212
2016-8-192
2016-8-181
2016-8-171
2016-8-161
2016-8-154
2016-8-131
2016-8-121
2016-8-101
2016-8-93
2016-8-81
2016-8-71
2016-8-51
2016-8-41
2016-8-11
2016-7-307
2016-7-291
2016-7-281
2016-7-275
2016-7-262
2016-7-253
2016-7-244
2016-7-232
2016-7-213
2016-7-194
2016-7-152
2016-7-142
2016-7-137
2016-7-123
2016-7-112
2016-7-102
2016-7-81
2016-7-73
2016-7-61
2016-7-52
2016-7-12
2016-6-303
2016-6-292
2016-6-281
2016-6-271
2016-6-252
2016-6-231
2016-6-222
2016-6-212
2016-6-191
2016-6-161
2016-6-154
2016-6-143
2016-6-131
2016-6-121
2016-6-101
2016-6-93
2016-6-63
2016-6-41
2016-6-21
2016-6-11
2016-5-312
2016-5-292
2016-5-272
2016-5-261
2016-5-251
2016-5-233
2016-5-211
2016-5-202
2016-5-182
2016-5-171
2016-5-152
2016-5-133
2016-5-123
2016-5-113
2016-5-103
2016-5-91
2016-5-81
2016-5-41
2016-5-34
2016-5-23
2016-5-13
2016-4-301
2016-4-282
2016-4-262
2016-4-243
2016-4-233
2016-4-222
2016-4-211
2016-4-182
2016-4-172
2016-4-151
2016-4-141
2016-4-131
2016-4-121
2016-4-111
2016-4-101
2016-4-92
2016-4-72
2016-4-63
2016-4-54
2016-4-31
2016-4-21
2016-4-13
2016-3-311
2016-3-303
2016-3-292
2016-3-281
2016-3-261
2016-3-251
2016-3-243
2016-3-234
2016-3-223
2016-3-2112
2016-3-204
2016-3-1910
2016-3-182
2016-3-164
2016-3-154
2016-3-144