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ABSTRACT

The object of considerations is a thin linear-elastic cylindrical shell having a periodic structure (i.e. a periodically varying
thickness and/or periodically varying elastic and inertial properties) in both directions tangent to the shell midsurface. Such shells
are called biperiodic.

The aim of this paper is to propose a new averaged non-asymptotic model of biperiodic shells, which makes it possible to
investigate parametric vibrations and dynamical stability of the shells under consideration.
As a tool of modeling we shall apply the tolerance averaging technique. The resulting equations have constant coefficients.
Moreover, in contrast with models obtained by the known asymptotic homogenization technique, the proposed one takes into
account the effect of the period lengths on the overall dynamic shell behavior, called a length-scale effect. It will be shown that
this effect plays an important role in the dynamical stability analysis of the shells considered in this paper.
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INTRODUCTION

In this paper, a new non-asymptotic model of dynamical stability analysis for thin cylindrical shells having a
periodic structure (i.e. periodically varying thickness and/or periodically varying elastic and inertial properties) in
both directions tangent to the shell midsurface M is presented. This situation is mainly oriented towards cylindrical
shells reinforced by periodically spaced dense system of ribs as shown in Figure 1. Shells with a periodic structure
along both directions tangent to M are termed biperiodic.

The periods of inhomogeneity are assumed to be very large compared with the maximum shell thickness and very
small as compared to the midsurface curvature radius as well as the smallest characteristic length dimension of the
shell midsurface. It means that the shells under consideration are composed of a large number of identical elements
and every such element, called a periodicity cell, can be treated as a shallow shell.



The periodic cylindrical shells, being objects of considerations in this paper, are widely applied in civil engineering,
most often as roof girders and bridge girders. They are also widely used as housings of reactors and tanks.

It should be noted that in the general case, on the shell midsurface we deal with not periodic but with what is called
a locally periodic structure in directions tangent to M. Following [21], by a locally periodic shell we mean a shell
which, in subregions of the shell midsurface M much smaller than M, can be approximately regarded as periodic.
Hence, a locally periodic shell is made of a large number of not identical but similar elements. However, for
cylindrical shells the Gaussian curvature is equal to zero and hence on the developable cylindrical surface we can
separate a cell which can be referred to as the representative cell for a whole shell midsurface. It means that on
cylindrical surface we deal with not a locally periodic but with periodic structure.

Because properties of periodic (or locally periodic) structures are described by highly oscillating, non-continuous,
periodic functions, the exact equations of the shell (plate) theory are too complicated to apply to investigations of
engineering problems. That is why a lot of different approximate modeling methods for shells and plates of this kind
have been proposed. Periodic cylindrical shells and plates are usually described using homogenized models derived
by means of asymptotic methods. These models represent certain equivalent structures with constant or slowly
varying stiffnesses and averaged mass densities, cf. [5, 11, 12, 13, 14, 15]. Unfortunately, in models of this kind the
effect of the period lengths (called also the length-scale effect) on the overall shell behavior is neglected.

The periodically densely ribbed plates and shells are also modeled as homogeneous orthotropic structures, cf. [1, 7].
These orthotropic models are not able to describe the length-scale effect on the overall shell (plate) behavior, being
independent of the periods of inhomogeneity.

In order to analyze this effect, the new averaged non-asymptotic models of thin uniperiodic cylindrical shells (i.e.
shells with a periodic structure along one direction tangent to M ) have been proposed in [19] and [20]. These, co
called, the tolerance models have been obtained by applying the non-asymptotic tolerance averaging technique,
proposed and discussed for periodic composites in the monograph [22], to the known equations of Kirchhoff-Love-
type cylindrical shells (differential equations with functional highly oscillating non-continuous periodic
coefficients). These tolerance models have constant coefficients in periodicity direction and take into account the
effect of a cell size on the global shell dynamics and stationary shell stability. This effect is described by means of
certain extra unknowns called internal or fluctuation variables and by known functions which represent oscillations
inside the periodicity cell, and are obtained either as approximate solutions to special eigenvalue problems for free
vibrations on the separated cell with periodic boundary conditions or by using the finite element discretization of the
cell. It has to be emphasized that the biperiodic shells, being subject-matter of considerations in this paper, are
special cases of those with a periodic structure along one direction tangent to M and hence the models for
uniperiodic shells can be applied to analyze the problems of biperiodic shells. However, the aforementioned
tolerance model of dynamic problems for periodic cylindrical shells proposed in [19], and that of stationary stability
problems given in [20] cannot be used to analyze a dynamical stability and parametric vibrations of the periodic
shells. That is why, in this paper the tolerance model of parametric vibration problems and dynamical stability
problems for biperiodic Kirchhoff-Love-type cylindrical shells, loaded by time-dependent forces tangent to the shell
midsurface is derived and discussed.

It is worthy noting that the application of the tolerance averaging technique to the investigation of selected dynamic
and stability problems for periodic plates can be found in many papers, e.g. in [17] and [3], where stability of
densely stiffened Kirchhoff-type plates and of Hencky-Bolle-type plates is analyzed, respectively, in [8] and [16],
where dynamics of Kirchhoff-type plates and of wavy-type plates is investigated, respectively. For more complete
review of possible applications of the tolerance averaging technique to the modeling of micro-periodic structures the
reader is referred to [22].

It has to be mentioned that an extremely extensive literature deals with elastic stability and dynamics of thin
cylindrical shells reinforced by widely spaced stiffeners. Contrary to the shells with densely spaced ribs, which are
objects of considerations in this paper, those having widely spaced stiffeners are analyzed with allowance for the
discreteness in the arrangement of the ribs. It means that the dynamic and stability problems of such shells are
considered within the framework of discrete models, while the dynamic and stability analysis of periodically,
densely ribbed cylindrical shells investigated in this paper is carried out within continuum models. The discrete
approach is in detail discussed in monographs [2, 6]. Moreover, in the mentioned monographs can be found an
extensive review of papers and books dealing with stability and dynamic problems of widely ribbed shells as well as
of densely stiffened shells treated as homogeneous orthotropic structures.

It is well known that stability problems of thin cylindrical shells being homogeneous or weakly heterogeneous have
to be investigated by using the geometrically nonlinear shell theory, cf. [4, 10, 18]. However, in the case of the
highly heterogeneous structures considered here (i.e. densely ribbed shells) which are described by using continuum



models, we are interested in the upper state of critical forces and hence we can use the geometrically linear stability
theory for thin linear-elastic cylindrical Kirchhoff-Love type shells.

The aim of this contribution is three-fold :

• First, to formulate an averaged non-asymptotic model of thin biperiodic cylindrical shells which has
constant coefficients and describes the effect of a cell size on the global dynamical stability of such shells.
This model will be derived by using the tolerance averaging procedure proposed in [22].

• Second, to derive a simplified model (called asymptotic or homogenized) in which the length-scale effect is
neglected.

• Third, to evaluate the effect of a cell size on the boundaries of two fundamental dynamic shell instability
regions by using both the tolerance and homogenized models.

Basic denotations, preliminary concepts and starting equations will be presented in Section 2. The general line of the
tolerance averaging approach will be shown in Section 3. The tolerance model for problems of dynamical stability
of linear-elastic thin cylindrical shells with a periodic structure in two directions tangent to M will be proposed and
discussed in Section 4. For comparison, the governing equations of a certain homogenized model will be given in
Section 5. In the subsequent section, in order to evaluate the length-scale effect in dynamic stability problems, both
the obtained tolerance and homogenized models will be applied to analyze the boundaries of two fundamental
dynamic instability regions in closed circular cylindrical shell reinforced by longitudinal and circular ribs, which are
densely and periodically distributed in circumferential and axial directions, respectively. Final remarks will be
formulated in the last section.

PRELIMINARIES

In this paper we will investigate thin linear-elastic cylindrical shells with a periodic structure along both
directions tangent to M. Cylindrical shells of this kind will be termed biperiodic. Example of such a shell is
presented in Figure1.

Figure 1. Example of biperiodic shell

Denote by Ω ⊂ 2R  a regular region of points Θ  ≡ ( 21,ΘΘ ) on the O 21ΘΘ -plane, 21,ΘΘ  being the

Cartesian orthogonal coordinates on this plane and let 3E  be the physical space parametrized by the Cartesian

orthogonal coordinate system O 321 xxx . Let us introduce the orthogonal parametric representation of the

undeformed smooth cylindrical shell midsurface M  by means of : M := {x ≡ ( 321 ,, xxx ) ∈ 3E : x = x

( 21,ΘΘ ), Ω∈Θ }, where x( 21,ΘΘ ) is a position vector of a point on M having coordinates 21,ΘΘ .

Throughout the paper indices βα , ,... run over 1,2 and are related to the midsurface parameters 21,ΘΘ ; indices
A,B, .... run over 1,2,...,N, summation convention holds for all aforesaid indices.

The partial derivatives are indicated by a comma.



To every point x=x( Θ ),  Ω∈Θ  we assign a covariant base vectors αα ,xa =  and covariant midsurface first

and second metric tensors denoted by αβαβ ba , , respectively, which are given as follows : βααβ aa ⋅=a ,

βααβ ,an⋅=b ,  where n is a unit vector normal to M.

Let )(Θδ  stand for the shell thickness. We also define t as the time coordinate.

Taking into account that coordinate lines 1Θ =const and 2Θ =const are parallel on the O 21ΘΘ -plane and that
1Θ  and 2Θ  are arc coordinates on M (or axial and arc coordinates on M for a shell with periodic structure along a

generatrix of the shell midsurface M and along the lines of principal curvature of M ), we define 1l  and 2l  as the

period lengths of the shell structure respectively in 1Θ - and 2Θ -directions on the O 21ΘΘ -plane. The period
lengths 1l  and 2l  are assumed to be sufficiently large compared with the maximum shell thickness and sufficiently
small as compared with the midsurface curvature radius R as well as the minimum characteristic length dimension L
of the shell midsurface, i.e. maxδ  << 1l , 2l  << min{R,L}.

On the given above assumptions for the periods 1l  and 2l , the shell under consideration will be referred to as a
mezostructured shell, cf. [21].

We shall denote by Ä ≡ )2/,2/()2/,2/( 2211 llll −×−  the plane element on the O 21ΘΘ -plane, which can be
taken as a representative cell of the periodic shell structure (the periodicity cell). To every Θ∈ Ω  an arbitrary cell

on O 21ΘΘ -plane will be defined by means of : ÄÄ,)Ä( Ω∈+≡ ΘΘΘ , ÄΩ := })Ä(:{ ΩΩ ⊂∈ ΘΘ ,

where the point ÄΩ∈Θ  is a center of a cell )Ä(Θ  and ÄΩ  is a set of all the cell centers which are inside Ω .

Let 2
2

2
1 lll +≡  be the diameter of the cell Ä . The parameter l has to satisfy the same assumptions as the period

lengths 1l , 2l , i.e. maxδ  << l << min{R,L}, and hence it will be called the mezostructure length parameter.

A function f( Θ ) defined on ÄΩ  will be called Ä -periodic if for arbitrary points ( 1Θ , 2Θ ), 1(Θ ± ), 2
1 Θl ,

21,( ΘΘ ± )2l , 1(Θ ± 2
1,Θl ± )2l  it satisfies the condition:  f( 21,ΘΘ )= 1(Θf ± ), 2

1 Θl = 21,( ΘΘf ± )2l =
1(Θf ± 2

1,Θl ± )2l  in the whole domain of its definition and it is not constant.

It is assumed that the cylindrical shell thickness as well as its elastic and inertial properties are Ä -periodic functions

of ),( 21 ΘΘ≡Θ . Shells like that are called biperiodic.

The above periodic heterogeneities can be also interpreted as those caused by a periodically spaced dense system of
ribs, as shown in Figure 1.

For an arbitrary integrable function ϕ (⋅) defined on Ω , following [22],  we define the averaging operation, given
by :

≡>< )(Θϕ  Ψ
Θ

d),(
ll )(

2∫
∆

ΨΨϕ 1

21

1
 ,   ),Ä(),( 21 ΘΨ ∈≡ ΨΨ    Θ  ≡ ( 21,ΘΘ  )∈ ÄΩ ,          (1)

For a periodic function ϕ  in Θ ,  its averaged value obtained from (1) is constant.

The denotation ≅  is used for a tolerance relation and −~  denotes an approximation due to the truncation of the
infinite series.



Our considerations will be based on the simplified linear Kirchhoff-Love second-order theory of thin elastic shells in
which terms depending on the second metric tensor of M are neglected in the formulae for curvature changes.
Below, we quote the general formulations of the theory under consideration.

The Kirchhoff-Love shell equations

Let ),( tu Θα , ),( tw Θ  stand for the midsurface shell displacements in directions  tangent and normal to M ,

respectively. We denote by ),( tΘαβε , ),( tΘαβκ  the membrane and curvature strain tensors and by

),( tn Θαβ , ),( tm Θαβ  the stress resultants and stress couples, respectively. The elastic properties of the shell are

described by 2D-shell stiffness tensors )(ΘαβγδD , )(ΘαβγδB . Let )(Θµ  stand for the shell mass density per

midsurface unit area. Let ),( tf Θα , ),( tf Θ  be external force components per midsurface unit area, respectively

tangent and normal to M. We denote by )(tN αβ  the time-dependent compressive membrane forces in the shell
midsurface.

Functions )(Θµ , )(ΘαβγδD , )(ΘαβγδB  and )(Θδ  are ∆-periodic functions of Θ .

The equations of a shell theory under consideration consist of:

–  the strain-displacement equations

,, ,),( γδγδγδδγγδ κε wwbu −=−=                                                                                     (2)

–  the stress-strain relations

,, γδ
αβγδαβ

γδ
αβγδαβ κε BmDn ==                                                                               (3)

–  the equations of motion

.0,0 ,,, =+−−+=+− fwwNnbmfuan &&&& µµ αβ
αβαβ

αβ
αβ
αβ

β
α

αβαβ
α                            (4)

In the above equations the displacements  ),( tu Θα and ),( tw Θ , Ω∈Θ , are the basic unknowns.

For biperiodic shells, )(Θµ , )(ΘαβγδD  and )(ΘαβγδB , Ω∈Θ , are non-continuous highly oscillating
Ä -periodic functions; that is why equations (2)-(4) cannot be directly applied to the numerical analysis of special
problems. From (2)-(4) an averaged non-asymptotic model of biperiodic cylindrical shells having coefficients,

which are independent of 1Θ - and 2Θ -midsurface parameters  as well as describing the cell size effect on the
global shell behavior, will be derived. In order to derive it, the tolerance averaging procedure given in [22], will be
applied. To make the analysis more clear, in the next section we shall outline the basic concepts and the main
assumptions of this approach, following the monograph [22].

MODELING CONCEPTS AND ASSUMPTIONS

Following the monograph [22], we outline below the basic concepts and assumptions which will be used in the
course of modeling procedure .

Basic concepts

The fundamental concepts of the tolerance averaging approach are those of a certain tolerance system, slowly
varying functions, periodic-like functions and periodic-like oscillating functions. These functions will be defined
with respect to the Ä -periodic shell structure defined in the foregoing section.
By a tolerance system we shall mean a pair T=( F, ε (⋅)), where F is a set of real-valued bounded functions F(⋅)
defined on Ω  and their derivatives (including also time derivatives), which represent the unknowns in the problem
under consideration (such as unknown shell displacements tangent and normal to M ) and for which the tolerance



parameters Fε  being positive real numbers and determining the admissible accuracy related to computations of

values of F(⋅) are given ; by ε  is denoted the mapping  F∋ F(·)→ Fε .

A continuous bounded differentiable function F(Θ,t) defined on Ω  is called Ä -slowly varying with respect to the
cell Ä  and the tolerance system T,  )(Ä TSVF ∈ , if for every Ω∈ΨΘ,  such that l≤− ΨΘ  the

following condition holds FFF ε≤− )()( ΨΘ . Roughly speaking, a function ),( tF Θ  defined on Ω  is Ä -
slowly varying if in the framework of tolerance can be treated (together with its derivatives) as constant on an
arbitrary periodicity cell Ä .

The continuous function )(⋅ϕ  defined on Ω  will be termed a Ä -periodic-like function, )()( Ä TPL∈⋅ϕ , with

respect to the cell Ä  and the tolerance system T, if for every ΩΘΘ ∈= ),( 21Θ  there exists a continuous Ä -

periodic function )(⋅Θϕ  such that )),(( 21 ΨΨ=∀Ψ [ ] Ωϕϕ ∈≅⇒≤− ΨΨΨΨΘ Θ ,)()(l , and the

similar conditions are also fulfilled by all its derivatives. It means that the values of a periodic-like function )(⋅ϕ  in

an arbitrary cell Ä),Ä( Ω∈ΘΘ , can be approximated, with sufficient accuracy, by corresponding values of a

certain Ä -periodic function )(⋅Θϕ . The function )(⋅Θϕ  will be referred to as a Ä -periodic approximation of

)(⋅ϕ  on )Ä(Θ .

Let )(⋅µ  be a positive value Ä -periodic function. The periodic-like function ϕ  is called Ä -oscillating (with the

weight µ ), )()( Ä TPLµϕ ∈⋅ , provided that the condition 0)( ≅>< Θµϕ  holds for every ÄΩ∈Θ . In the

special case µ =const the oscillating periodic-like functions satisfies condition 0)( ≅>< Θϕ , ÄΩ∈Θ ; in this

case we shall write )(1 TPL∆ϕ ∈ .

In the subsequent considerations, the following propositions will be used:

(P1) If )()( Ä TPL∈⋅ϕ  and f is bounded Ä -periodic function then )()( Ä TSVf ∈⋅>< ϕ ,

(P2) If )()( Ä TPL∈⋅ϕ  then there exists the decomposition )(~)()( 0 ⋅+⋅=⋅ ϕϕϕ , where

             )()( Ä
0 TSV∈⋅ϕ  and )()(~ TPLµ

∆ϕ ∈⋅ , moreover, it can be shown that 10 )()( −><⋅>≅<⋅ µµϕϕ  ,

(P3) If )(Ä TSVF ∈  and f is bounded continuous Ä -periodic function then )(Ä TPLfF >∈< ,

(P4) If )(Ä TSVF ∈ , )(Ä TSVG ∈ , kF+mG∈F  for some reals k,m, then kF+mG )(Ä TSV∈ .

The proofs of these propositions can be found in [22].

Modeling assumptions

The tolerance averaging technique is based on two modeling assumptions. The first of them is strictly related to the
concept of Ä -slowly varying and Ä -periodic-like functions.

Tolerance Averaging Assumption.  If )(Ä TSVF ∈ , )()( Ä TPL∈⋅ϕ  and )(⋅Θϕ  is a Ä -periodic

approximation of )(⋅ϕ  on )Ä(Θ  then for every Ä -periodic bounded function  f(⋅) and every continuous Ä -

periodic differentiable function h(⋅) such that sup{|h ),( 21 ΨΨ |,  ),( 21 ΨΨ ∈Ä }≤ l , the following tolerance

averaging  relations determined by the pertinent tolerance parameters hold for every ÄΩ∈Θ :

(T1)   )()()( ΘΘΘ FffF >≅<><  ,             (T2)   )()()( ,, ΘΘ >≅<>< αα fFhhFf ,

(T3)    )()( ΘΘ Θ >≅<>< ϕϕ ff ,                 (T4)    )()()( ,, ΘΘ ><−≅>< αα ϕϕ hffh .



It means that in the course of averaging the left-hand sides of formulae (T1)-(T4) can be approximated by their
right-hand sides, respectively.

The second modeling assumption is based on heuristic premises.

Conformability Assumption.  In every periodic solid the displacement fields have to conform to the periodic
structure of this solid. It means that the displacement fields are periodic-like functions and hence can be represented
by a sum of averaged displacements, which are slowly varying (with respect to the cell and tolerance system), and
by highly oscillating periodic-like disturbances, caused by the periodic structure of the solid.

The aforementioned Conformability Assumption together with the Tolerance Averaging Assumption constitute the
foundations of the tolerance averaging technique. Using this technique the tolerance model of dynamical stability
problems for biperiodic cylindrical shells will be derived in the subsequent section.

THE TOLERANCE MODEL

Modeling procedure

Let us assume that there is a certain tolerance system T = ( F, ε (⋅)), where the set F consists of the unknown shell
displacements tangent and normal to M and their derivatives.

The tolerance averaging approach to Eqs. (2)-(4) will be realized in five steps.

Step 1. From the Conformability Assumption and (P2), it follows that the unknown shell displacements ),( tu Θα ,

),( tw Θ  in Eqs.(2)-(4) have to satisfy the conditions: )(),( TPLtu ∆α ∈Θ , )(),( TPLtw ∆∈Θ  and hence can
be decomposed into

,),(),(),(,),(),(),( tptWtwtdtUtu ΘΘΘΘΘΘ +=+= ααα                                          (5)

where ),( tU Θα , )(),( TSVtW ∆∈Θ  are the averaged parts of displacements ),( tu Θα , ),( tw Θ ,

respectively, called macrodisplacements and defined by ),(),( 1 tutU ⋅><>≡<⋅ −
αα µµ ,

),(),( 1 twtW ⋅><>≡<⋅ − µµ , and )(),(),,( TPLtptd µ
∆α ∈⋅⋅  are the fluctuating parts of displacements

),( tu Θα , ),( tw Θ , respectively, such that >< ),( td Θαµ = >< ),( tp Θµ =0.

In the subsequent considerations, we will neglect the effect of the fluctuations ),( tp Θ  on the shell stability (this

effect will be studied in a separated paper). It means that in equation (4)2 we shall approximate the term αβ
αβ

,wN

by αβ
αβ

,WN .

Step 2. Substituting the right-hand side of (5) into (4) and after the tolerance averaging of the resulting equations,
we arrive at the equations

,),()],(

),()([

,
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Θ
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β
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γδδγ
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which must hold for every ÄΩ∈Θ  and every time t.



The above averaging implies the condition ),( tf Θ>< β , ),( tf Θ>< )(Ä TSV∈ . This situation takes place

if the shell external loadings satisfy the condition: )(),(,),( TPLtftf ∆
β ∈ΘΘ . Subsequently we shall use the

decomposition:

),,(~),(),(),,(~),(),( 00 tftftftftftf ⋅+⋅=⋅⋅+⋅=⋅ βββ  where ),(),(),,( 00 TSVtftf ∆
β ∈⋅⋅

)(),(~),,(~ 1 TPLtftf ∆
β ∈⋅⋅  and .0),(~),(~ =>=<>< tftf ΘΘβ

Step 3. Multiplying Eqs.(4)1 and (4)2 by arbitrary ∆-periodic test functions d*, p*, respectively, such that

0** >=>=<< pd µµ , integrating these equations over Ä),Ä( Ω∈ΘΘ , and using the Tolerance Averaging

Assumption, as well as denoting by pd ~,~
α  the Ä -periodic approximations of pd ,α , respectively, on )Ä(Θ , we

obtain the periodic problem on )Ä(Θ  for functions ),,(~ 21 td ΨΨα , ),,(~ 21 tp ΨΨ ,

),( 21 ΨΨ )Ä(Θ∈ = ),Ä( 21 ΘΘ , given by the following variational conditions

,)(

~~~

,
*
,

*
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WbUDdfd
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γδδγ
αβγδ

α
β

αβαβγδ
αγδδγ

αβγδ
α µ

−><+><−=

=><−><+><− &&

(7)

.)(

~]~~[~

,
*
,,

**

**
,

*
,

*
,

γδ
αβλδ

αβγδδγ
αβγδ

αβ

αβγδ
γδδγ

αβγδ
αβγδ

αβγδ
αβ µ

WBpWbUDpbfp

pppDpbdDpbpBp

><−−><+>=<
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Conditions (7)1 and (7)2 must hold for every ∆-periodic test function *d  and for every ∆-periodic test function *p ,
respectively.

Equations (6),(7) represent the basis for obtaining the tolerance model of thin linear elastic biperiodic cylindrical
shells, which makes it possible to investigate free and forced vibrations, parametric vibrations, dynamical stability
and stationary stability (after neglecting the inertial forces and time coordinate).

Step 4. In order to obtain solution to the periodic problem on )Ä(Θ , given by the variational equations (7), we can

apply the known orthogonalization method. Hence, for arbitrary ),( 21 ΨΨ )Ä(Θ∈ , Ä
21 ),( ΩΘΘ ∈=Θ  we

can look for solutions to the periodic problem (7) in the form of the finite series

,,...,2,1,),,(),(),,(~
,),,(),(),,(~

212121

212121

NAtVgtp

tQhtd
AA

AA

==

=

ΘΘΨΨΨΨ

ΘΘΨΨΨΨ αα
                                                                   (8)

in which the choice of a number N of terms in the finite sums determines different degrees of approximations and

where ),,(),,,( 2121 tVtQ AA ΘΘΘΘα  are new kinematic unknowns called fluctuation variables, being Ä -

slowly varying functions, i.e. )(, TSVVQ AA
∆α ∈ . Moreover, ),( 21 ΨΨAh , ),( 21 ΨΨAg , A=1,...,N, are

known in every problem under consideration, linear-independent, l-periodic functions such that

∈− AAAAA glggllhh 22,2,
1

2, ,,,, (l) and max⏐ ),( 21 ΨΨAh ⏐≤ l , max⏐ ),( 21 ΨΨAg ⏐≤ 2l  as well as

>< Ahµ = >< Agµ =0 for every A and >< BAhhµ = = >< BA ggµ =0 for every A≠B.

Functions ),( 21 ΨΨAh , ),( 21 ΨΨAg , A=1,2,…N,  in (8) can be derived from the periodic Finite Element
Method discretization of the cell and hence will be referred to as the shape functions. It can be observed that in
many cases this discretization of the cell requires a large number of finite elements and consequently the number N



of extra unknowns AA VQ ,α  in (8) is also large. The functions ),( 21 ΨΨAh , ),( 21 ΨΨAg , A=1,...,N, can
also be obtained as exact or approximate solutions to certain periodic eigenvalue problems on the cell describing

free periodic vibrations of the cell. It means that the functions Ah , Ag  represent the expected forms of free
periodic vibration modes of an arbitrary cell and hence are referred to as the mode-shape functions. Following [19],

this periodic eigenvalue problem of finding continuous Ä -periodic eigenfunctions ),(),,( 2121 ΨΨΨΨα gh ,

)Ä(),( 21 Θ∈ΨΨ , Ä
21 ),( ΩΘΘ ∈=Θ   is given by the equations

,0),(),()],(),([ 21221
,

21
,

21 =+ ΨΨωΨΨµΨΨΨΨ α
αβ

δαγ
αβγδ hahD

(9)

,0),(),()],(),([ 21221
,

21
,

21 =− ΨΨωΨΨµΨΘΨΨ γδαβ
αβγδ ggB

and by the periodic boundary conditions on the cell )Ä(Θ  together with the continuity conditions inside )Ä(Θ ; by
ω  we have denoted the free vibration frequency. By averaging the above equations over )Ä(Θ  we obtain

>< αµ h = >< gµ =0.

Thus, )],...,(),,([)],,(),,([ 212212211211 ΨΨΨΨΨΨΨΨ αα ghgh .. is a sequence of eigenfunctions related

to the sequence of eigenvalues [ ] [ ]ω ω ω ωα α
2 2

1
2 2

2
, , , ,......  . In the modeling procedure this sequence is

restricted to the N≥1 eigenfunctions. Moreover, in most problems the analysis will be restricted to the simplest case
N=1 in which we take into account only the lowest natural vibration modes (in directions tangent and normal to M )
related to Eqs. (9).

In this paper it is assumed that AA hh 21 =  and hence we denote AAA hhh 21 =≡ .

Step 5. Substituting the right-hand sides of (8) into (6) and (7) and setting ),( 21* ΨΨAhd = ,

),( 21* ΨΨAgp = , A=1,2,...,N,  in (7), on the basis of the Tolerance Averaging Assumption we arrive at the
tolerance model of dynamical stability problems for biperiodic cylindrical shells. In the next subsection the
equations of this model will be given and discussed.

Governing equations of the non-asymptotic model

In the previous subsection, applying the tolerance averaging of Kirchhoff-Love second-order shell equations we
have arrived at the tolerance model of dynamical stability problems for shells having a periodic structure along both
directions tangent to the shell midsurface.
Under extra denotations :

,,~
, >≡<>≡< AA hDDDD δ

αβγδαβγαβγδαβγδ

L l b D g B B K B gA A A Aαβ
γδ

αβγδ αβγδ αβγδ αβ αβγδ
γδ≡ < > ≡< > ≡< >−2 , ~ , ,,

,,, >≡< BAAB hhDC δα
αβγδβγ      ,,

2 ><≡ − BAAB ghDblF α
αβγδ

γδ
β

(10)

,,, >≡< BAAB ggBS γδαβ
αβγδ      ,4 ><≡ − BAAB ggDbblL αβγδ

γδαβ

,,~,~ 42 ><≡><≡>≡< −− BAABBAAB gglhhl µµµµµµ

,~~,~~ 21 ><≡><≡ −− AAAA gflPhflP ββ



this model is represented by :

– the constitutive equations

,)(~ 2
,

BBBB VLlQDWbUDN αβ
γ

αβγ
γδδγ

αβγδαβ −+−=

,~
,

BB VKWBM αβ
γδ

αβγδαβ +=
(11)

,)( 2
,

BABBABAA VFlQCWbUDH β
γ

βγ
γδδγ

βγδβ −+−=

,)()( 42
,,

2 BABABBABAAA VLlSQFlWKWbULlG ++−+−−≡ γ
γ

αβ
αβ

γδδγ
γδ

– the system of three averaged partial differential equations of motion for macrodisplacements  Uα(Θ,t),  W(Θ,t)

,0~,0~
0,,0, =−++−=+− fWWNNbMfUaN &&&& µµ αβ

αβαβ
αβ

αβ
αβ

β
α

αβαβ
α                   (12)

– the system of 3N ordinary differential equations for the fluctuation variables

 QB
α ( Θ,t), VB( Θ,t) , B=1,2,...,N,

,,...,2,1,,0~
,0~~

24

2

NBAPlGVl

PlHQal
AABAB

AABAB

==−+

=−+

&&

&&

µ

µ ββ
γ

γβ

                                                                            (13)

where some terms depend explicitly on the mezostructure length parameter l.

The above model has a physical sense provided that the basic unknowns

,)(),(),,(),,(),,( Ä TSVtVtQtWtU AA ∈ΘΘΘΘ γα  A=1,2,...,N,  i.e. they are Ä -slowly-varying functions of

1Θ - and 2Θ -midsurface parameters.

It can be observed that in the tolerance model equation (12) we deal with )(tN αβ >0 if )(tN αβ  are compressive
forces.

Taking into account (5) and (8) the shell displacement fields can be approximated by means of formulae

,,...,2,1,),(),(),(~),(

,),(),(),(~),(
21

21

NAtVgtWtw

tQhtUtu
AA

AA

=+−

+−

ΘΘΘ

ΘΘΘ

ΨΨ

ΨΨ ααα
                                                                     (14)

where the approximation −~  depends on the number of terms ,),(),( 21 tQh AA ΘαΨΨ

),(),( 21 tVg AA ΘΨΨ .

The characteristic features of the derived model are:

• The model takes into account the effect of the cell size on the overall shell dynamics and stability; this effect
is described by terms dependent explicitly on the mezostructure length parameter l .

• The model equations have constant coefficients.
• The number and form of boundary conditions for the macrodisplacements ),(),,( tWtU ΘΘα  are the same

as in the classical shell theory governed by equations (2)-(4). The fluctuation variables

),(),,( tVtQ AA ΘΘγ  are governed by the system of 3N ordinary differential equations involving only time
derivatives; hence there are no extra boundary conditions for these functions, and that is why they play the
role of kinematic internal variables.



• It is easy to see that in order to derive the governing equations (11)-(13), we have to previously obtained the

periodic shape (mode-shape) functions  ),( 21 ΨΨAh , ),( 21 ΨΨAg , A=1,2,...,N. These functions can
be derived from the periodic finite element method discretization of the cell or obtained as solutions to the
periodic eigenvalue problem describing free vibrations of the cell, given by (9). Moreover, it can be shown
that the results obtained in the framework of the first approximation (i.e. for N=1) are sufficient from the

computational point of view, provided that the functions 1hh ≡ , 1gg ≡  are not derived from the periodic
finite element method discretization of the cell but are taken as eigenfunctions related to the smallest
eigenvalues of the eigenvalue cell problem given by means of equations (9).

For a homogeneous shell )(Θµ , )(ΘαβγδD  and )(ΘαβγδB , Ω∈Θ , are constant and because

>< Ahµ = >< Agµ =0 we obtain >< Ah = >< Ag =0, and hence < >h A
,α  = < >g A

,α = = < >g A
,αβ  = 0.

In this case equations (12) reduce to the well known linear-elastic shell equations of motion for macrodisplacements

),(),,( tWtU ΘΘα , and independently for ),(),,( tVtQ AA ΘΘα  we arrive at a system of N differential

equations. In the case under the condition 0~~ == ff β and for initial conditions ),(),( 00 tVtQ AA ΘΘ =α =0,

A=1,2,...,N, we obtain 0== AA VQα ; hence the constitutive equations (11) and equations of motion (12) reduce to
the starting equations (3)and (4), respectively.

It has to be emphasized that the tolerance model (11)-(13) has been derived in the framework of the geometrically
linear stability theory for thin linear-elastic Kirchhoff-Love type shells. That is why, the model can be applied to
analyze the problems of dynamic shell stability, provided that the upper critical forces are sufficient from the point
of view of calculations made for solving those problems.

In the next section the homogenized model of biperiodic cylindrical shells under consideration will be derived as a
special case of equations (11)-(13).

GOVERNING EQUATIONS OF THE ASYMPTOTIC MODEL

The simplified model of biperiodic cylindrical shells, called homogenized or asymptotic, can be derived directly
from the tolerance model (11)-(13) by a limit passage l→0, i.e. by neglecting the terms which depend on the
mezostructure length parameter l . Hence, Eqs.(13) yield :

.

,)(

,

,

γδ
γδ

γδδγ
βγδ

γ
βγ

WKVS

WbUDQC
BAAB

ABAB

−=

−−=
                                                                                                            (15)

From the positive definiteness of the strain energy it follows that N×N matrix of elements ABS  is non-singular, and

the linear transformation determined by components C AB βγ  is invertible. Hence a solution to equations (15) can
be written in the form

Q G D U b W

V E K W

B BC C

A AB B

γ γ η
ηµϑ

µ ϑ µϑ

γδ
γδ

= − −

= −

( ) ,

,

,

,

                                                                                                      (16)

where ABAB EandGαβ  are defined by ., ACBCABACBCAB SECG δδδ γ
α

βγ
αβ ==

Setting

D D D G D B B K E Keff
A AB B

eff
A AB Bαβγδ αβγδ αβη

ηξ
ξγδ αβγδ αβγδ αβ γδ≡ − ≡ −~ , ~ ,

and substituting the expression (16) into the constitutive equations (11)1,2 , in which the underlined term is neglected,
we arrive at the homogenized (asymptotic) shell model governed by:



– equations of motion

,0)(

,0)(

0,,,

0,,

=−><++−−

=+><−−

fWWNWbUDbWB

fUaWbUD

effeff

eff

&&

&&

µ

µ

αβ
αβ

γδδγ
αβγδ

αβαβγδ
αβγδ

β
α

αβ
αγδδαγ

αβγδ

                                        (17)

–  constitutive equations

γδ
αβγδαβ

γδδγ
αβγδαβ

,, ,)( WBMWbUDN effeff =−=                                                                             (18)

where D Beff eff
αβγδ αβγδ,  are called the effective stiffnesses .

The obtained above homogenized model governed by Eqs.(17),(18) is not able to describe the length-scale effect on
the overall shell behavior being independent of the cell size l .

In order to show differences between the results obtained from the tolerance biperiodic shell model (11)-(13), and
from the homogenized model (17) and (18), the boundaries of two fundamental regions of the dynamic shell
instability will be determined and analyzed in the next section.

APPLICATIONS

Now, the governing equations of both the models presented in the previous Sections will be applied to analyze the
problem of dynamic stability of a closed circular cylindrical simply supported shell with 1L  as its axial length and

with δ , R as its constant thickness and its midsurface curvature radius, respectively. The shell is reinforced by
two families of longitudinal ribs (called stringers), which are periodically densely distributed in circumferential
direction and, at the same time, the shell is reinforced by two families of circular ribs (called rings), which are
periodically densely distributed along the axis of the shell; the fragment of such a shell is shown in Figure 2. The
stiffeners of both families are assumed to have constant rectangular cross-sections with 21 , AA as their areas and

with 2,1 II  as their moments of inertia. Moreover, the gravity centers of the stiffener cross-sections are situated on

the shell midsurface, cf. Figures 3 and 4. It is assumed that both the shell and stiffeners are made of homogeneous
isotropic materials and let us denote by E, ν  Young’s modulus and Poisson’s ratio of the shell material,
respectively, and by 2,1 EE  Young’s moduli of the rib materials. At the same time 0µ  stands for the constant shell

mass density per midsurface unit area and 1µ , 2µ  stand for the constant mass densities of the stiffeners per the
stiffener unit length, cf. Figures 3 and 4.

Let 1Θ , 2Θ  be axial and arc coordinates on the shell midsurface M , respectively, and let 2Θ -coordinate lines
coincide with the lines of principal curvature of this surface.

It is assumed that the edges of the shell lie on the coordinate lines 1
11 ,0 L== ΘΘ and that all four edges are

simply supported.

In agreement with considerations in Section 2., on 21ΘΘO -plane we define 1l  and 2l  as the periods of the

stiffened shell structure in 1Θ - and 2Θ -directions, respectively. In the subsequent considerations it will be
assumed that the periods 1l  and 2l  are equal and hence let us introduce the denotation 21 lll =≡ . The period

ll =1  represents the distance (i.e. the rectilinear length measured along the axial coordinate lines) between axes of

two neighboring rings belonging to the same family, cf. Figures 2 and 3. The period ll =2  represents the distance
(i.e. the arc length measured along the lines of midsurface principal curvature) between axes of two neighboring
stringers belonging to the same family, cf. Figures 2 and 4. The period 21 lll =≡  has to satisfy the conditions

)2,min( 1 RLl πδ <<<< ; it means that the number of stiffeners has to be very large.



Figure 2. A fragment of a shell with two families of biperiodically spaced ribs

Figure 3. A fragment of the stiffened shell cross-section αα −

Figure 4. A fragment of the stiffened shell cross-section ββ −

Denoting by 21 , aa  the widths of the ribs (cf. Figures 3 and 4) we assume that laa <<21 ,  and hence the
torsional rigidity of stiffeners can be neglected.

The tensile and bending rigidities of the stiffeners are constant. The rigidities of the shell are also constant and

described by the components of the shell stiffness tensors αβγδ
0D  and αβγδ

0B  given by the known formulae, cf. [9]



,0
αβγδαβγδ DHD =            αβγδαβγδ BHB =0 ,                                          (19)

where

)1/( 2νδ −= ED ,            ))1(12/( 23 νδ −= EB ,
(20)

)]([5.0 βγαδβδαγβγαδβδαγαβγδ ν ∈∈+∈∈++= aaaaH

with αγa , αγ∈ as contravariant first midsurface tensor and Ricci bivector, respectively. After some manipulations

we obtain the following expressions for the nonzero components of tensor αβγδH :

122221111 == HH ,   ν== 22111122 HH ,   2/)1(2112212112211212 ν−==== HHHH .       (21)

We define the square periodicity cell Ä  on 21ΘΘO -plane by means of

Ä ≡ )2/,2/()2/,2/( llll −×− , ΘΘ +≡ Ä)Ä( , }.)Ä(,{:,),( ÄÄ
21 ΩΩΩΩΘΘ ∈∈=∈≡ ΘΘΘ

Setting )Ä(),( 21 ΘΨ ∈≡ ΨΨ , we assume that the cell ∆ has two symmetry axes for 01 =Ψ  and .02 =Ψ
The cell Ä  is shown in Figure 5.

Figure 5. A periodicity cell on 21ΘΘO -plane, laa <<21,

The periodically densely ribbed shell under consideration will be treated as a non-stiffened shell with constant

thickness δ, made of a certain non-homogeneous material. Let us denote by αβγδD , αβγδB  and µ  the stiffness

tensors and mass density of this non-ribbed shell, respectively. The non-stiffened shell’s tensile stiffnesses 1111D ,
2222D  and its bending stiffnesses 1111B , 2222B  are l-periodic functions in Θ . Inside the cell Ä , these

rigidities take the following form
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=)(1111 ΨB .
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=)(2222 ΨB .
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Under assumption that the torsional rigidity of stiffeners is neglected, the remaining rigidities of the non-stiffened

shell are constant and given by αβγδαβγδ
0DD = , αβγδαβγδ

0BB =  Taking into account expressions (19)-(21),
these constant non-zero stiffnesses are given by

2/)1(, 211221211221121222111122 νν −====== DDDDDDDD ,

2/)1(, 211221211221121222111122 νν −====== BBBBBBBB ,

The mass density µ  of the non-stiffened shell is l-periodic function in Θ  and inside the cell Ä  is given by

=)(Ψµ .
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Taking into account definition (1) we obtain for functions ),(1111 ΨD  ),(2222 ΨD  ),(1111 ΨB  ),(2222 ΨB
)(Ψµ  given above the following averaged values

lAEAEDDD /)(~
2211

11111111 ++>=≡< ,    lAEAEDDD /)(~
2211

22222222 ++>=≡< ,

lIEIEBBB /)(~
2211

11111111 ++>=≡< ,      lIEIEBBB /)(~
2211

22222222 ++>=≡< ,                (27)

l/)(2~
210 µµµµµ ++>=≡< .

In order to analyze the problem of dynamic shell stability, we assume that the external forces ff ,β  are equal to

zero and that the shell is uniformly compressed in axial direction by the time-dependent forces )()( 11 tNtN ≡ ;

hence 0222112 === NNN . Moreover, the forces of inertia in directions tangential to the shell midsurface
will be neglected.

Let the investigated problem be axisymmetric. For axisymmetric deformation 022 == AQU  and the remaining

unknowns AA VWQU ,,, 11  are only the functions of the 1Θ -midsurface parameter.



For the sake of simplicity, we shall confine ourselves to the simplest form of the tolerance model in which A=N=1.

Hence, we introduce only two l-periodic mode-shape functions )()( 1 ΨΨ hh ≡  and

)Ä(),()( 1 ΘΨΨΨ ∈≡ gg , which have to satisfy condition 0>=>=<< gh µµ  and the values of which
are of order (l) and (l2), respectively. Functions )(Ψh , )(Ψg  can be obtained as solutions to periodic
eigenvalue problem for free vibrations on the cell given by equation (9) and hence they are referred to the lowest
natural vibration modes related to the smallest free vibration frequencies in directions tangent and normal to the
shell midsurface, respectively. Moreover, taking into account the symmetric form of the cell, cf. Figure 5, we
assume that the mode-shape function )(Ψh is antisymmetric on the cell Λ while the mode-shape function )(Ψg is
symmetric.

Taking into account the fact that, except for 2222111122221111 ,,, BBDD , the components of the shell stiffness

tensors αβγδD , αβγδB are constant and baring in mind the symmetric form of the cell and the symmetric form of
function )(Ψg as well as antisymmetric form of function )(Ψh , it can be shown that only the following averages

in (10) are different from zero: αβγδD~ , αβγδB~ , 22AL , 11AK , 22AK , 11ABC , 22ABC , ABS , ABL , µ~ ,
ABµ , A,B=1. It is evident that the aforementioned averages αβγδD~  and αβγδB~  are different from zero for the

non-zero components of tensors αβγδD  and αβγδB . Moreover, under assumption that the external forces

0== ff β  and that the forces of inertia in directions tangent to M are neglected we have in (10):

0~~~ === AAAB PP βµ , A,B=1.

Under assumption A=B=N=1, for the mentioned above non-zero averages including the non-tensorial indices A,B we
introduce the following denotations

 2222 ALL ≡ ,   1111 AKK ≡ ,   2222 AKK ≡ ,   1111 ABCC ≡ ,   2222 ABCC ≡ ,
ABSS ≡ ,   ABLL ≡ ,   ABµµ ≡ ,           A,B=1.                                                                                              (28)

We also denote ),(),( 11
1

1
1 tQtQ ΘΘ ≡ , ),(),( 111 tVtV ΘΘ ≡ .

Bearing in mind the conditions and denotations given above we will derive below the formulae for boundaries of
dynamic instability regions (i.e. the boundaries of regions of parametric resonance) for the considered biperiodic
shell by using both the tolerance model given by Eqs.(11)-(13) and the homogenized model presented by
Eqs.(17),(18.).

The tolerance model

Now, the governing equations (12),(13) of the tolerance model is separated into the independent equation for

),( 1
1 tQ Θ : 01

11 =QC , which yields 01 =Q , and the system of three equations for macrodisplacements

),( 1
1 tU Θ , ),( 1 tW Θ  and fluctuation variable ),( 1 tV Θ

,0~
1,

1
11,1

1111 =+ − WRDUD ν

,0~~~ 2221
11,

11
11,

22222
1111,

1111
1,1

1 =−+++++ −−− VLlRVKWWNWRDWBURD &&µν                  (29)

( ) ,044
11,

112221 =++++− − VlVLlSWKWLlR &&µ

where some terms depend explicitly on the period length 21 lll == ; the averages 1111~D , 2222~D , 1111~B , µ~
are defined by (27) and the remaining ones are given by (28) and (10).

It is easy to see, that all coefficients of the above equations are constant.



Separating variables 1Θ  and t, the solutions to Eqs.(29) satisfying boundary conditions for the simply supported

shell on the edges 1
11 ,0 L== ΘΘ  can be assumed in the form (see [9])
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V
m tTtV ΘαΘ                                                                                                                       (30)

where 1/ Lmm πα = .

Substituting the right-hand sides of (30) into (29) and after some manipulations, the equation for function )(tTm  is
obtained
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                   (31)

Because the shell under consideration satisfies the condition 1/ 1 <<Ll , i.e. 1<<lmα  and also 1/ <<lδ  and

1/ <<Rl , in the sequel the simplified form of Eq.(31) will be applied, in which terms
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equation (31) takes the following approximate form
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We assume that the compressive axial forces )(11 tNN ≡  are given by

)cos()( ptNNtN ba +=                                                                                                                                     (33)

where p is the oscillation frequency of these forces and ba NN ,  are constant.
Let us denote
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and then introduce the following formulae
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where mω  and ∗ω  are the m-th lower and “additional” higher free vibration frequencies, respectively, mcrN ,  is

the m-th static critical force, mΩ  is the m-th free vibration frequency of the shell subjected to an axial force

mcra NN ,<  and mµ(  is the modulation factor.

Using these formulae, the frequency equation (32) can be transformed into
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The above equation is a starting point of the analysis of dynamic stability of the considered shell in the framework
of the non-asymptotic model. All parameters in this equation depend on the period length l and hence it makes it
possible to investigate the length-scale effect on the parametric vibrations and dynamical stability of periodic shells.
It must be emphasized that the obtained fourth order ordinary differential equation (35) is a certain generalization of
the known Mathieu equation; it takes the form of the Mathieu equation provided that in (35) the length-scale effect
is neglected.

The analysis of dynamic stability leads to the determination of the instability regions (parametric resonance regions)
on the ),/( mmp µΩ -plane, cf. [9]. Thus, applying a procedure similar to that used for the investigation of the
Mathieu equation, we will determine the instability regions for solutions to equation (35). Within the resonance
regions vibrations grow up in an unlimited way as t→∞. Outside and at the boundaries of the resonance regions
there exist periodic solutions to equation (35) with the parametric excitation periods pTp /2π=

(
 and pT

(
2 .

Following [9], the solution to equation (35) with a period pT
(

2 , related to vibrations of the m-th harmonics of the
series (30)2, can be assumed in the form
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Substituting (36) into (35) and after comparing the coefficients of pertinent trigonometric functions to zero, we
obtain two homogeneous, infinite systems of linear algebraic equations
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where 
∗

≡
ω

ξ
2

p
; 0=ξ  for 0→l .



For sufficiently small values of modulation factor ( 1<<mµ( ) and for the basic, largest parametric resonance region

which occurs in the vicinity of the frequency mp Ω2= , the characteristic determinants of systems (37) and (38)
can be approximated by the first components of relations (37)1 and (38)1. In this case, for every m=1,2,…, on the

),/( mmp µΩ -plane we obtain the boundaries of the first instability region (resonance region) given by
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Solutions (39) take into account the length-scale effect; the free vibration frequency mΩ , the modulation factor

mµ(  and the additional higher free vibration frequency ∗ω  depend on the period length 21 lll =≡ . We have also

obtained the extra condition for the oscillation frequency p of axial compressive forces: ∗≠ ω2p . For 0→l ,
expressions (39) take the form known in literature, cf.[9].
Now, we are looking for solution to equation (35) with a period pT

(
. Following [9], this solution related to

vibrations of m-th harmonics of the series (30)2 can be assumed in the form
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Substituting (40) into (35) and after comparing the coefficients of pertinent trigonometric functions to zero, we
obtain two homogeneous, infinite systems of linear algebraic equations
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where 
∗

≡
ω

ξ p~
; 0~ =ξ  for 0→l .

For sufficiently small values of modulation factor ( 1<<mµ( ) and for the second parametric resonance region

which occurs in the vicinity of the frequency mp Ω= , the characteristic determinants related to systems (41) and

(42) can be restricted to two rows and two columns. Hence, for each value m=1,2,…, on the ),/( mmp µΩ -plane
we obtain the boundaries of the second instability region given by
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Results (43) depend on the cell size and for 0→l  take the classical form known in literature. Moreover, we have
obtained the extra condition for the oscillation frequency p of axial compressive forces: ∗≠ ωp .

The homogenized model

In order to evaluate obtained results, let us consider the above problem within the homogenized (i.e. asymptotic)
model. From Eqs.(29), after neglecting the terms of orders (l2) and (l4), we obtained the following governing
relations of the homogenized model
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The obtained above model is not able to describe the length-scale effect on the overall shell stability being
independent of the period length l.

The solutions to Eqs.(44) can be assumed in the form (30). Substituting (30) into (44) and setting
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we arrive at the following frequency equation
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It is easy to see that all parameters of the above equation are independent of the cell size and that in the framework
of the asymptotic model it is not possible to determine the additional higher free vibration frequency, caused by the
periodic structure of the shell. It is also easy to see that the equation (46) has a form of the known Mathieu equation,
which describes dynamic stability and parametric vibrations of different structures, cf. [9].

Using the procedure for the determination of the instability region boundaries describes in the previous subsection,
we obtain the classical formulae

– for the first instability region (vibrations with period pT
(

2 )

.1
2

,1
2 0

2

0
0

2

0
m

m
m

m

pp µ
Ω

µ
Ω

(( −≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
                          (47)

– for the second instability region (vibrations with period pT
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In the next subsection a comparison of the results obtained in the preceding subsections will be presented.

Comparison of results

First of all, let us compare the lower free vibration frequency 2
mω  given by (34)1 and the static critical force mcrN ,

defined by (34)3, which have been obtained in the framework of the tolerance model, with the free vibration



frequency 2
0 mω  given by (45)1 and the static critical force mcrN ,0  determined by (45)2 obtained from the

homogenized model. To this end, let us denote 4l≡ε , where the constant ε  can be treated as a small parameter. It
is easy to show that using this notation and then representing the right-hand sides of formulae (34)1 and (34)3 in the
form of the power series with respect to ε , we obtain
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−−≡ SKN mmmcr ηα + (ε).             (49)

Taking into account expressions (45)1 and (45)2, we arrive finally at the following interrelations

2
0

2
mm ωω = + )( 4l ,                       mcrmcr NN ,0, = + )( 4l .                                   (50)

It means that the differences between the values of squares of the m-th free vibration frequencies 2
mω  and 2

0 mω
obtained within the framework of the tolerance and homogenized models, respectively, as well as between the
values of the m-th critical forces mcrN ,  and mcrN ,0  obtained from both the models under consideration are

negligibly small. Thus, the effect of the period length l on the free vibrations and critical forces of the shell under
consideration can be neglected; i.e.
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Next, substituting the right-hand sides of (51) into expressions (34)4, (34)5 and comparing the obtained results with
formulae (45)3, (45)4, respectively, we conclude that, in the framework of tolerance, the m-th free vibration
frequency mΩ  of the shell subjected to axial forces mcra NN ,<  and the modulation factor mµ(  calculated from

the tolerance model are equal to the m-th free vibration frequency m0Ω  and the modulation factor m0µ( ,

respectively, obtained in the framework of the asymptotic model, i.e
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In this case, substituting the right-hand sides of (52) into (39) and (43), for every values of m=1,2,…, we obtain the
following formulae for the boundaries
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– of the second instability region (vibrations with period pT
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within the framework of the tolerance model; the period length l is contained in the additional higher free vibration
frequency ∗ω  given by (34)2.

Comparing the obtained above expressions (53) and (54) derived from the tolerance non-asymptotic model with the
corresponding expressions (47) and (48), respectively, obtained from the homogenized (i.e. asymptotic) one, we
conclude that the differences between results obtained from both the models under consideration increase with



increasing the parameters ξ  and ξ~ , i.e. with increasing values of the oscillation frequency p of the axial

compressive forces )()( 11 tNtN ≡  and with decreasing the higher free vibration frequency ∗ω . The frequency

∗ω  decreases with increasing the values of the period length l, the growth of which is restricted by the condition

),min( 1 RLl << . It can also be observed that because the expressions (53) and (54) describe the boundaries of

parametric resonance regions which occur in the vicinity of the oscillation frequency mp 02Ω=  and mp 0Ω= ,

respectively, then the frequency p grows with increasing the free vibration frequency m0Ω , i.e. with increasing

m=1,2,…. For every investigated shell, the upper limits of values of parameters ξ  and ξ~  have to be determined

experimentally. It has to be emphasized that, because the values of the additional free vibration frequency ∗ω  are
very large then the situation in which the oscillation frequency p of the axial compressive forces is very close to the
frequency ∗ω  (in this case the length-scale effect would be very big) is impossible from the physical point of view.

Let us remember that the results obtained here have a physical sense, provided that the upper critical forces are
sufficient from the point of view of calculations made for the problem of determining the boundaries of instability
regions in biperiodically densely stiffened cylindrical shells under consideration.

CONCLUSIONS

Summarizing the results obtained in this section the following conclusions can be formulated:

• Contrary to homogenized (asymptotic) model, the proposed non-asymptotic one describes the effect of the
period lengths on the shell dynamic shell stability.

• In the framework of the non-asymptotic tolerance model proposed in this contribution, the fundamental
lower and additional higher free vibration frequencies can be derived. Differences between these lower
free vibration frequencies and free vibration frequencies obtained from the asymptotic model are negligibly
small. On the other hand, the higher free vibration frequency, caused by a periodic structure of the stiffened
shell, cannot be determined using the homogenized (i.e. asymptotic) model.

• Taking into account the effect of the period lengths on dynamic stability of thin periodic shells we arrive at
the fourth-order ordinary differential equation for the unknown function of time coordinate, which can be
treated as a certain generalization of the known Mathieu equation. It reduces to the Mathieu equation
provided that the period lengths are neglected. On the contrary, within the homogenized model the known
Mathieu equation is obtained.

• The differences between boundaries of the first and second dynamic instability regions, obtained from the
tolerance model and the asymptotic one, increase with increasing values of the oscillation frequency p of
the axial compressive forces and with increasing values of the period lengths. For high values of p the
length-scale effect plays a crucial role and cannot be neglected.

FINAL REMARKS

The subject-matter of this contribution is a thin linear-elastic cylindrical shell having a periodic structure (a
periodically varying thickness and/or periodically varying elastic and inertial properties ) in both directions tangent
to the undeformed shell midsurface M. Shells of this kind are termed biperiodic. Moreover, it is assumed that the
biperiodic cylindrical shells, being objects of our considerations, are composed of a very large number of identical
elements and every such element is treated as a shallow shell. It means that the periods of inhomogeneity are very
large compared with the maximum shell thickness and very small as compared to the midsurface curvature radius as
well as the smallest characteristic length dimension of the shell midsurface in the periodicity direction. This
biperiodic structure of cylindrical shells considered here can be related to the periodically spaced dense system of
ribs as shown in Figure 1.

For the biperiodic cylindrical shells the known governing equations of the Kirchhoff-Love shell theory involve
periodic highly oscillating and non-continuous coefficients. Hence, in most cases direct application of these
equations to analyze engineering problems in periodic shells is very complicated, particularly from the
computational viewpoint. That is why the aim of this contribution was to propose a new non-asymptotic model of
biperiodic cylindrical shells for problems of dynamics and dynamical stability, which has constant coefficients and
hence can be applied as a proper analytical tool for investigations of engineering problems in the shell under
considerations. Moreover, the proposed model takes into account the effect of periodicity cell size on the global



shell dynamics and dynamical stability as well as stationary stability, called the length-scale effect, which is
neglected in the known homogenized models derived by asymptotic methods.

In order to derive the model equations the tolerance averaging procedure given in [22], has been applied to
governing equations of the Kirchhoff-Love second-order shell theory for thin linear-elastic cylindrical shells, i.e. to
equations (2)-(4). The proposed averaged non-asymptotic model called the tolerance model of dynamic and
dynamical stability problems for biperiodic cylindrical shells is governed by the constitutive relations (11), by the
system of differential equations (12),(13) with constant coefficients and by the approximation formula (14) for the
total shell displacements. The basic unknowns are: the macrodisplacements Uα , W and the fluctuation variables

Q V A NA A
α , , , ,..., ,= 1 2  which have to be slowly-varying functions with respect to the cell and certain tolerance

system. This requirement imposes certain restrictions on the class of problems described by the model under
consideration. It can be observed that the constant coefficients in (12),(13) depend on the period lengths and hence
describe the effect of a cell size on the overall behavior of the biperiodic shell.

The boundary conditions for macrodisplacements are the same as in the classical shell theory. The fluctuation
variables are governed by the system of ordinary differential equations involving only time derivatives and hence
there are no extra boundary conditions for these functions, and that is why they play the role of kinematic internal
variables.

In order to obtain the governing equations the mode-shape (shape) functions h g A NA A, , , ,..., ,= 1 2  should
be derived from the periodic finite element method discretization of the cell or obtained as solutions to periodic
eigenvalue problem on the cell given by equations (9). This eigenvalue problem describes free periodic vibrations of

the cell, and hence the eigenfunctions AA gh , , A=1,2,..,N, represent the expected forms of the oscillating part of
free vibration modes of the periodicity cell. Moreover, in most problems the analysis is restricted to the simplest
case N=1 in which we take into account only the lowest natural vibration modes (in directions tangent and normal to
the shell midsurface ) related to the smallest free vibration frequencies.

It has to be emphasized that the tolerance model (11)-(13) has been derived in the framework of the
geometrically linear stability theory for thin linear-elastic Kirchhoff-Love type shells. That is why, this model can be
applied to analyze the problems of dynamic shell stability, provided that the upper critical forces are sufficient from
the point of view of calculations made for solving those problems.

Let us note that the model presented here can be treated as a certain generalization of the models given in [19,
20], because makes it possible to analyze not only free and forced vibrations and static critical forces but also
parametric vibrations and dynamical stability of biperiodic cylindrical shells. However, it has to be emphasized that
the biperiodic shells are special cases of those with a periodic structure along one direction tangent to the shell
midsurface (called uniperiodic) and hence the model proposed here cannot be applied to investigate the problems of
uniperiodic shells.

In this paper, it has also been shown that the model without the length-scale effect, called homogenized or
asymptotic, is a special case of the tolerance one.

The derived both the tolerance and asymptotic models have been used in this contribution to investigate the
effect of the period lengths on the dynamic stability of closed, simply supported, biperiodically densely stiffened
cylindrical shells under time-dependent axial compressive forces. In the framework of the tolerance model we have
obtained the fourth-order ordinary differential equation for the unknown function of time coordinate, which can be
treated as a certain generalization of the known Mathieu equation. It reduces to the Mathieu equation provided that
the period lengths are neglected. On the contrary, within the homogenized model the known Mathieu equation is
obtained. It has been shown that the differences between the boundaries of the dynamic instability regions obtained
from the generalized Mathieu equation and from the classical Mathieu equation are large, particularly for high
values of oscillation frequency of the axial compressive forces. It means that the length-scale effect on the dynamic
shell stability cannot be neglected.

Moreover, in the framework of the non-asymptotic model proposed here, not only the fundamental lower but
also the additional higher free vibration frequencies can be derived and analyzed. These higher free vibration
frequencies depend on the period lengths and cannot be derived from the asymptotic models. On the other hand, the
effect of the period lengths on the lower free vibration frequencies is negligibly small and hence they can be
approximated by similar frequencies derived from the asymptotic models.



Problems related to various applications of the proposed equations (11)-(13) to dynamics and dynamical stability
of biperiodic cylindrical shells as well as the possible generalizations of these equations are reserved for separate
papers. Determination of the mode-shape functions from periodic eigenvalue problem given by (9) is also reserved
for a separate paper.
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