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ABSTRACT

A method of stiffened plates modeling is being described in the paper. The method consists on dividing a
construction into plate elements and stiffeners. Each of these elements is calculated independently, taking
unknown forces of co-operation between these elements into consideration. These forces are determined from
the conditions of the continuity of displacements on the common surfaces of the plate elements and stiffeners.
The plates under consideration are made of ferroconcrete and the stiffeners are on the one side of the plate.
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INTRODUCTION

The plates are being reinforced by stiffeners in order to increase their load capacity. The examples of stiffened-
plate-type structures are slab floors and bridge plates. If the joint between a plate and a stiffener is continuous,
such plates are called stiffened (reinforced by stiffeners). Stiffened plates are nonhomogeneous and anisotropic.
Various methods of their modeling may be found in the literature. In 1914, introducing the notion of equivalent
stiffness, M. T. Huber worked out the model of a constructionally ortotropic plate and applied it to the
calculations of ferroconcrete plates [1-2]. The method of equivalent stiffness (modules) can be also applied to
stiffened plates [3-6]. The equivalent stiffness can be calculated by means of many ways, e.g. direct methods [6],
method of microlocal parameters [7-8], method of asymptotic homogenization [9-12] or averaging tolerance
technique (nonasymptotic homogenization) [13-15]. The other approach is presented in [16-17], where the
stiffened plates are described as the homogeneous plates with variable stiffness or variable thickness [18]. The
solution of problems of mechanics, dynamics as well as stability of rectangular isotropic plates reinforced by
stiffeners was presented in 1954 [19-20]. The monograph [21] is dedicated to static, dynamic and stability
analysis of stiffened plates; it also consists the extensive literature on this topic.

Thin plates stiffened on the one side (Fig. 1) are being considered in presented paper. To model such plates, an
analytic method has been applied, which consists on dividing a construction into plate elements and stiffeners.



Every of these parts is being calculated independently, taking an unknown co-operation between them into
consideration. This co-operation is determined from the conditions of the continuity of displacements on the
common surfaces of the plate elements and stiffeners.

THE MODELING OF DISPLACEMENT FIELD IN A PLATE AND STIFFENERS

One shall consider a thin rectangular isotropic plate, reinforced on the bottom by the series of thin isotropic stiffeners,
distributed parallel to each other.

The size of a typical fragment of the plate in a medium surface by 2aj (j = 1, 2) may be denoted. The thickness of
the plate and the stiffeners shall be denoted by h1 and h2, respectively. The widths of the outermost stiffeners are
assumed as the same and equal δ, whereas the width of the central stiffener is assumed as 2δ. It may be also
assumed that the plate is supported at the stiffeners or mounted at the edges. On the upper surface of the plate an
arbitrary load works.

Fig. 1. The scheme of a stiffened plate

The origin of Carthesian coordinate system Ox1x2x3 is assumed to be hold in the geometric center of the plate, the
axis Ox1 is directed along the stiffeners, the axis Ox3 − perpendicularly to it (Fig. 1).

It may be assumed that the horizontal displacement field is of a form:
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x , w is the deflection of the plate, U1 − an unknown function which may be determined

later from the conditions of the continuity of displacements.

In a similar way it may be assumed that the horizontal displacements of the stiffener № i (i = 0, 2, Fig. 1) are
equal
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In (2), the function v(i)(xi) is the deflection of the stiffener № i, whereas V(i) − a correcting function describing the
horizontal displacement of the stiffener № i.
On the surfaces of contact between the plate and the stiffeners, the conditions of the continuity of deflection

( ) ( )( )121 2
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==  (i = 0, 2) as well as of the horizontal displacements ( )i

dx uu
i 11 2
==  are to be

satisfied; di denotes the distance of the stiffener № i from the central axis of the plate. In the case i = 0, δ0 = 0
denotes the position of the central stiffener and δ2 = a2 corresponds to the outermost stiffeners.



Let w(i)(x1) denote the deflection of the plate in the section corresponding to the stiffener № i,
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21 , whereas v(i)(x1) − the deflection of this very stiffener. If the condition of the continuity of

deflection of the plate and the stiffener ( )( ) ( )( )11 xvxw ii =  is fulfilled, then the condition of the angle

continuity with normal rotation ( ) ( )ii vw 11 ,, =  is fulfilled automatically. To satisfy the condition of the continuity

of horizontal deflection, it is sufficient to satisfy the condition ( ) ( )( )11211 2
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== . In order to do this,

one defines the function U1(x1, x2) as follows:
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where ( )( )11 xU i  are the functions of the horizontal displacement of non-stiffened parts of the plate. As follows
from (3), the function U1(x1, x2) is discontinuous. One may expand it into a Fourier series:
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It may be assumed that a load operating at the plate and the boundary conditions are such that
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functions ( )( )11 xU i  and ( )( )11 xV j  do not depend on the variable x2, then the formula (5) may be written in a
form:
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where the following denotations have been introduced:
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In that case the function U1(x1, x2) assumes a form:
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It is easy to check out that every discontinuous static or kinematic quantity evoked by existing of the stiffeners
may be presented in a similar way.



DEFINITION OF A STRESS STATE IN THE PLATE AND THE STIFFENERS

The stress state is determined separately for the plate and the stiffeners. The normal (σ11, σ22) and tangential
(σ12) stresses in the plate are described by the physical equations of plane stress:
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where E and ν are Young modulus and Poisson’s coefficient of the plate, respectively. Substituting the
displacements (1) to the deformations, these whereas − to the stresses (9), one obtains:
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According to the Kirchhoff’s theory, the stresses σ13, σ23 are equal

    ( )∫ ∫ +−−= 21132,1231,1113 , xxfdxdx σσσ

                                     ( )∫ ∫ +−−= 21232,2231,2123 , xxfdxdx σσσ                                             (11)

where − for the sake of simplicity − the body forces have been neglected. The functions
fα(x1, x2), α = 1, 2 existing in (11) are arbitrary integration constants. The derivatives of the normal and
tangential stresses in the integrands may be obtained by the differentiation of the physical equations (10) on
account of the variables x1, x2. Then, integrating them on account of the variable x3, one obtains the formulas for
the stresses σ13, σ23 in the plate:
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where the denotation has been introduced:
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From the conditions that the stresses (12) on the upper plate surface must be equal to 0
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The calculated stresses (15) are equal to 0 on the bottom surface of the plate everywhere but the stiffened area. In
this area, the conditions of the continuity of stresses of the plate and the stiffeners must be satisfied.

It may be denoted the stress σ13(x1, x2) on the bottom surface of the plate by ( ) ( )21
*

13 , xxτ  and the stress
( )( )113 xiσ  on the upper surface of the plate by ( )( )113 xiτ . One assumes
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On the bottom and upper surface of the plate, the following boundary conditions must be satisfied:
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To fulfill the condition (17), one changes the discontinuous function (16) of the stress ( )( )21
*

13 , xxτ  into the

continuous function ( )2113 , xxτ , using the procedure described in Section 1 (this function may be expanded
into the Fourier’s series on account of the variable x2):
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The coefficients of this series have a form:
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The stress ( )( )113 xiτ  existing in (19) may be defined as the limit stress ( )( )113 xiσ  on the upper surface of the stiffener № i:
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Subsequently, the stress ( )( )3113 , xxiσ  is determined from the equation of equilibrium and physical equations
written for the stiffener № i:
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This stress must be equal to 0 on the bottom surface of the stiffener:
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what is ensured by an appropriate choice of the function ( )( )11 xf i . Then the stress ( )i
13σ  assumes a form:
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One shall define the stress on the upper surface of the stiffener:
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Knowing ( )i
13τ  as well as using (18) and (19), one constructed stress function ( )2113 , xxτ  in a form:
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One shall write down the stress ( )32113 ,, xxxσ   on the bottom surface of the plate in a form:
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Using (8), the derivatives of the function U1(x1, x2) may be determined and the following formula of the function
Ψ1(x1, x2) may be obtained:
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From the condition of the continuity of stresses σ13, σ23 on the common surface of the plate and the stiffeners one
obtains differential relations between the function of the horizontal displacement of the plate U1 and the
stiffeners ( )iV1  and their derivatives:
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where the denotations have been introduced:
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For the case of a symmetrical construction the solution of this system of equations comes to a form:
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The solution (30) is being used to define the following functions:
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Now one shall use the conditions of the continuity of deflections and normal stresses on the surfaces of contact
between the plate and the stiffeners. The normal stress σ33 is determined from the equation of equilibrium:
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Denoting the limit stress σ33(x1, x2) on the bottom surface of the plate by S33(x1, x2):
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one may present the function S33(x1, x2) in the form of a trigonometric series:
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where [ ] ( )2133 , xxS i  is the normal stress on the upper surface of the stiffeners [ ]( )2133 , xxiσ :
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If the stress σ33 has to fulfill the condition (34), it assumes a form:
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Comparing (37) and (38), the equation of bending of thin isotropic plates with consideration of the influence of
shield forces may be obtained:

                 1,1
1

3322 6 Ψ+
−

=∇∇
hD

Sq
w ;   (39)
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= EhD  is the known stiffness of a plate on account of bending, q − an external load applied to

an upper surface of a plate.

In the equation (39) an unknown function S33(x1, x2) exists, which shall be determined from the comparison to
the limit normal stress ( )( )133 xiσ  on the upper surface of the stiffener № i; this stress is defined by the relation

(36). At first, one determines the stress ( )( )133 xiσ  from the equation of equilibrium (similarly as for the plate):
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Then, one satisfies the boundary condition on the upper surface of the stiffener
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and the basic equations of bending of the stiffener (bar) considering the shield forces may be obtained:
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where 
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D =  is the bending rigidity of the stiffener № i. The stress ( )iS33 , which is treated as the load

applied to the upper surface of the stiffener № i, is unknown, as well as the deflection of this stiffener. To solve
the equation (41), one presents the stress ( )( )133 xS i  in a form of a trigonometric series:
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πδ −= , while the coefficients ( )i

mΖ  are unknown constant parameters. Replacing (41) by (42),

one obtains the ordinary nonhomogeneous differential equation of 4th order for an unknown function v(i) of the
deflection of the stiffener № i:
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In a similar way the equations (39) may be transformed. Using the series (42) and the form (35), the function
S33(x1) may be given in a form of a double trigonometric series:
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Analogically one presents the external load:
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where qmn are the coefficient of the series.

Using (32), one determinates the derivatives of Ψ1, which − after substitution to (39) − come to the following
equation:
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This is a nonhomogeneous differential equation of 4th order on account of an unknown function of the plate
deflection w.



THE SOLUTION OF THE BASIC EQUATIONS

One seeks the general solutions of the differential equations (43, 46) in a form of the sum of the general integral
of a homogeneous equation and the particular integral of a nonhomogeneous equation. The general solution of
(46) has a form:
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where Wν(k)(x1, x2) are the functions of the plate deflection [22]. The unknown coefficients Rν(k) are defined from
the boundary conditions of the plate. The particular solution of this equation has a form:

[ ] [ ] += ∑∑
∞

=

∞

=1 1
2

2
1

1
* coscos

m n
nmmn xxBw δδ ( )

( )
( )

[ ]{ }∑∑∑
= = =

N

n

N

k i
nki

i
kn xxKS

1 1

2

0
2

2
11 coscosh δ . (48)

The general solution of (43) shall be written in a form:
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In (49) one knows only the coefficients qmn, while all of the rest are unknown. The coefficients existing in (48),
(49) are determined from the conditions of the continuity of deflections on the surfaces of contact between the
plate and the stiffener.

One shall differentiate the particular integrals (48), (49) of the equations (43), (46):
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Comparing (46), (50) to (43), (51), the relations between the parameters Bmn, qmn and ( )
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The remaining parameters are determined from the conditions of the continuity of deflection of the plate (47) and
the stiffener (48) on their common surfaces:
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The equation
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may be fulfilled − in an approximate way − only in two points: x1 = 0 and x1 = a1.

CONCLUSIONS

The new constructed model of thin isotropic rectangular plates reinforced on the bottom side by the series of stiffeners
distributed parallel is presented in the paper. In this model the conditions of the continuity of stress are satisfied. The obtained
system of equations has been solved analytically.

In the model, the boundary conditions at the plate edges are satisfied within a great accuracy.
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