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ABSTRACT

A method of stiffened plates modeling is being described in the paper. The method consists on dividing a
construction into plate elements and stiffeners. Each of these elements is calculated independently, taking
unknown forces of co-operation between these elements into consideration. These forces are determined from
the conditions of the continuity of displacements on the common surfaces of the plate elements and stiffeners.
The plates under consideration are made of ferroconcrete and the stiffeners are on the one side of the plate.
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INTRODUCTION

The plates are being reinforced by stiffeners in order to increase their load capacity. The examples of stiffened-
plate-type structures are slab floors and bridge plates. If the joint between a plate and a stiffener is continuous,
such plates are called stiffened (reinforced by stiffeners). Stiffened plates are nonhomogeneous and anisotropic.
Various methods of their modeling may be found in the literature. In 1914, introducing the notion of equivalent
stiffness, M. T. Huber worked out the model of a constructionally ortotropic plate and applied it to the
calculations of ferroconcrete plates [1-2]. The method of equivalent stiffness (modules) can be also applied to
stiffened plates [3-6]. The equivalent stiffness can be calculated by means of many ways, e.g. direct methods [6],
method of microlocal parameters [7-8], method of asymptotic homogenization [9-12] or averaging tolerance
technique (nonasymptotic homogenization) [13-15]. The other approach is presented in [16-17], where the
stiffened plates are described as the homogeneous plates with variable stiffness or variable thickness [18]. The
solution of problems of mechanics, dynamics as well as stability of rectangular isotropic plates reinforced by
stiffeners was presented in 1954 [19-20]. The monograph [21] is dedicated to static, dynamic and stability
analysis of stiffened plates; it also consists the extensive literature on this topic.

Thin plates stiffened on the one side (Fig. 1) are being considered in presented paper. To model such plates, an
analytic method has been applied, which consists on dividing a construction into plate elements and stiffeners.



Every of these parts is being calculated independently, taking an unknown co-operation between them into
consideration. This co-operation is determined from the conditions of the continuity of displacements on the
common surfaces of the plate elements and stiffeners.

THE MODELING OF DISPLACEMENT FIELD IN A PLATE AND STIFFENERS

One shall consider a thin rectangular isotropic plate, reinforced on the bottom by the series of thin isotropic stiffeners,
distributed parallel to each other.

The size of a typical fragment of the plate in a medium surface by 2&; (j = 1, 2) may be denoted. The thickness of
the plate and the stiffeners shall be denoted by h, and h,, respectively. The widths of the outermost stiffeners are
assumed as the same and equal 8, whereas the width of the central stiffener is assumed as 23. It may be also
assumed that the plate is supported at the stiffeners or mounted at the edges. On the upper surface of the plate an
arbitrary load works.

Fig. 1. The scheme of a stiffened plate
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The origin of Carthesian coordinate system OX;X,X; is assumed to be hold in the geometric center of the plate, the
axis O is directed along the stiffeners, the axis Ox; — perpendicularly to it (Fig. 1).

It may be assumed that the horizontal displacement field is of a form:

u, (Xl,X2X3)= —X; W, (Xl’Xz) _Ul (X17X2); u, (XI,X27X3): —X;W,, (Xl, Xz) M

h
where X; € [— ?l R El , W is the deflection of the plate, U; — an unknown function which may be determined
later from the conditions of the continuity of displacements.

In a similar way it may be assumed that the horizontal displacements of the stiffener Ne i (i = 0, 2, Fig. 1) are
equal

ul(i)(xl » X3 ) = _X3Va§i) (Xl ) _V1(i)(x1 ) (@)

In (2), the function v(i)(xi) is the deflection of the stiffener Ne i, whereas V) — a correcting function describing the
horizontal displacement of the stiffener Ne i.
On the surfaces of contact between the plate and the stiffeners, the conditions of the continuity of deflection

W(XI,X2 )\xzzdi =V(i)(X1) (i = 0, 2) as well as of the horizontal displacements U, =u1(i) are to be

%, =d,
satisfied; d; denotes the distance of the stiffener Ne i from the central axis of the plate. In the case i =0, 8, =0
denotes the position of the central stiffener and 8, = @, corresponds to the outermost stiffeners.



Let V\/(i)(xl) denote the deflection of the plate in the section corresponding to the stiffener Ne i,
W(i)(x1 ) = M x,=d, » Whereas V(x,) — the deflection of this very stiffener. If the condition of the continuity of
deflection of the plate and the stiffener W(i)(Xl)ZV(i)(XI) is fulfilled, then the condition of the angle
(i) _y ©

v,

continuity with normal rotation W,; "=V, is fulfilled automatically. To satisfy the condition of the continuity
of horizontal deflection, it is sufficient to satisfy the condition U, (X1 5 Xy )‘ oty = Vl(i)(Xl ) In order to do this,

one defines the function U;(X;, X;) as follows:

v (x) da-a,<x <—(a,-6)

U™ () da-(a, -5)<x, <=6

V9 (x,), dla-6<x,<6 3)
u," (x) diad<x, <(a,-5)
v e

UI(X17X2): (
(x,), dlaa,-6<x,<a,.

ey

where Ul(i)(Xl) are the functions of the horizontal displacement of non-stiffened parts of the plate. As follows
from (3), the function U;(X;, %) is discontinuous. One may expand it into a Fourier series:

Ul(xl,xz):ZP,](xl)cos&P]x2 @)

n=l1
(2n Dr
2a,

where 5 . The coefficients Py(X;) of the series (4) are of a form:

Pn(xl):i _[V )(x, )cos 8 2lx, dx, + _[U (x, )cos 2%, dx, +

—& —(2,-6)

+IV )(x, )cos 82x, dx, + JU )(x, )cos 821x, dx, + JV X, Jcos 8 2lx, dx, )

a,—0
It may be assumed that a load operating at the plate and the boundary conditions are such that
Vl(_z) (X1 )ZVI(Z) (Xl ), Ul(_l)(Xl)Z Ul(l)(Xl) — then the formula (5) substantially simplifies itself. Since the

functions U 1(|) (Xl) and Vl(j)(Xl) do not depend on the variable X,, then the formula (5) may be written in a

form:

P,(x)=Civ, O (x )+ Cu " (x )+ Civ P (x,), (©)

where the following denotations have been introduced:

sels 2|siné(a, ~5)-sind? 5 2|sinda, —sind? (@, —&
CIE?];: [sm 2 ]’ CIEL)): [Sln (a2a25£z]) sin ]’ C&: [Sln aga;;] (az )] ™

In that case the function U;(X;, X;) assumes a form:

—
—

U,(x,%)=Y [Cl((on))vl(”(x1 )+CHU M (x)+CEV, ]cos5 Ry . ®)

n=1

It is easy to check out that every discontinuous static or kinematic quantity evoked by existing of the stiffeners
may be presented in a similar way.



DEFINITION OF A STRESSSTATE IN THE PLATE AND THE STIFFENERS

The stress state is determined separately for the plate and the stiffeners. The normal (6, G,;) and tangential
(o1,) stresses in the plate are described by the physical equations of plane stress:

E ( )’ E

o, = 5 \&p HVEy, 0y = 2 (822 +V811), O, = Gy12 ©
I-v l-v

where E and v are Young modulus and Poisson’s coefficient of the plate, respectively. Substituting the

displacements (1) to the deformations, these whereas — to the stresses (9), one obtains:

E E
Oy :_F[XS(W711+WV722)+U1,1]; On :—m[x3(w,22+wv,n)+le,l ’

O, =— )(2x3w,12+U 12 ) (10)

2(1+v
According to the Kirchhoff’s theory, the stresses 613, Gp; are equal

O = _J.oll,ldx3 - folz,zdxs + fl (X19 Xz)

0y :_Io-Zl,ldX3 _Jazz,zdx3 + fz (Xl’xz) an

where — for the sake of simplicity — the body forces have been neglected. The functions
fuX, %), o = 1, 2 existing in (11) are arbitrary integration constants. The derivatives of the normal and
tangential stresses in the integrands may be obtained by the differentiation of the physical equations (10) on
account of the variables X;, X%. Then, integrating them on account of the variable X;, one obtains the formulas for
the stresses 13, 0,3 in the plate:

E | X
O = 1—v? |:73V2W’1+X3\P1(X15X2) + fl(XI’XZ)

EX2
O3 :mvzwaz'kfz(xlaxz) (12)

where the denotation has been introduced:

l-v
Y :U1,11 + ( )Ul,22' (13)
2
From the conditions that the stresses (12) on the upper plate surface must be equal to 0

O3 xl:—% =0. Oy 0 (14)

X :—% -

one determines the functions f,(X;, X,), which — after substituting to (12) — yield

E |[1(., h'). h,
METE ) R A RN W
1 2 h12 E 2
.= —| X} ——L V2w, 5
23 > 3 4 1—V2 2 (15)

The calculated stresses (15) are equal to 0 on the bottom surface of the plate everywhere but the stiffened area. In
this area, the conditions of the continuity of stresses of the plate and the stiffeners must be satisfied.

It may be denoted the stress G3(X;, %) on the bottom surface of the plate by T 1(;) (X1 R Xz) and the stress

(o 1('3) (Xl ) on the upper surface of the plate by T 1('3) (X1 ) One assumes



762 (x), da-a, <x, <-(a,-8)

0, da—(a, -8)<x, <=6
9%, % )=479(x,), da-6<x,<6 (16)
0, dia §<x,<(a, -9)

_r(f;(xl), dlaa,-5<x,<a,.

On the bottom and upper surface of the plate, the following boundary conditions must be satisfied:

O3 x3:% = 71(3)9 Oy % =0 7

X3=

To fulfill the condition (17), one changes the discontinuous function (16) of the stress T 1(;)(X1, X2) into the

continuous function T, (Xl, Xz), using the procedure described in Section 1 (this function may be expanded
into the Fourier’s series on account of the variable x,):

71(;)()(1 > %y ) ~ T3 (Xl > X, ) = zTn (X;)cos 5r£2]xz (18)
n=l

The coefficients of this series have a form:

2 Y 1 %
T, (%)= g{rl‘;’)(xl )[cos51x, ] o t(x) JeossPlx, [=CiRr(x)+Cll ) (x). a9)

= a,-0

The stress T 1(;) (X1 ) existing in (19) may be defined as the limit stress O 1(;) (X1 ) on the upper surface of the stiffener Ne i:
) —~0
Ti3 (Xl )— O3 (Xl s X3 X X,=—h, /2 (20)

Subsequently, the stress O 1(I3) (Xl, X3) is determined from the equation of equilibrium and physical equations
written for the stiffener Ne i:

2
i i i X5 i i i
ol :—Jol(l?ldx3 + 19 (x)=E [73V,(131 +x3Vlfl)1:|+ £ (x,) @1)
This stress must be equal to 0 on the bottom surface of the stiffener:
0 LSWORNURWION N0
O3 )(3:% =E ?V,m +7V1,11 + f1 (Xl ): 0 (22)

what is ensured by an appropriate choice of the function fl(i)(X1 ) Then the stress O 1('3) assumes a form:

[ 1 hy | h [
0-1(3) =k |:5 X32 _72 ,(11)1 +(X3 _72}/1,(1)1] (23)

One shall define the stress on the upper surface of the stiffener:

[ i 1 h, [ h [ [
0-1(3) L 71(3) = Ei Y X32 - ,(11)1 1% - 1,(1)1 = _Ei th1,(13- 24
2 2 4 2 L
2

3=

)

Knowing 7T,y as well as using (18) and (19), one constructed stress function 7, (X1 » Xy ) in a form:



Ti3 (Xl » Xy ): -h, z [Cl((on)) EOVI,(?I) (Xl )+ Cl%)) E2V1,(121) (Xl )}OS5£Z]X2 (25)
n=1

One shall write down the stress 04 (Xl 5 X5, X4 ) on the bottom surface of the plate in a form:

1-v
O3 2hwl_ 2h,( ot (2 )U1,22)' (26)

ﬁ

Using (8), the derivatives of the function U;(X;, X;) may be determined and the following formula of the function
¥ 1(X1, %) may be obtained:

\Plzz{ [vf{? (12")5[2 v<°>]+c [Ul?1 —1;V5n[2]2u1<°>]+
n=1
+C) |:V1 ,5?—@552]%(2)]}(:05 sklx, . @7)

From the condition of the continuity of stresses G;3, G,3 on the common surface of the plate and the stiffeners one
obtains differential relations between the function of the horizontal displacement of the plate U; and the

stiffeners Vl(i) and their derivatives:

0 (2)
VlEk;,ll - KO(k Vlgk) =0; Ul(k)ll Kl(k)Ul(k) =0; V k)11 Kz(k)V1(k) =0 (28)

where the denotations have been introduced:

__En(-vpl' K _(=vfT Ko = Eh (1-v)5)”
‘W7o, 0-v)E,+EN] M 2 7 Y ol 1-v?)E, + Eh |

(29)

For the case of a symmetrical construction the solution of this system of equations comes to a form:
(0) 0) o ) _ O ) _1 @
V(%)= L9 sinhlKygox b U 06 )= LY sinhl Ko ) Vi) (x) =L, sinl K% ) G0)

The solution (30) is being used to define the following functions:

O (x )= Zv (%)= ZL )sinh (/Koo )
k-1
N N
)= U0 kZ L sinh (/K %, ). 61

2) kT\‘l Nl .
V2 (x,) 2 2 _ smh( KawX )
k=1 k=l
Replacing (27) by (31), one obtains
N
( ) 2{ ysinh, [Kgio % + N ) Sinhy K%+ Nln sinh,/K, }0055 (32)
k=1 n=1

where the denotation: N 1(:1)(k) = Cl?n)) LIEL))[Ki(n) —%5 :l has been introduced.



Now one shall use the conditions of the continuity of deflections and normal stresses on the surfaces of contact
between the plate and the stiffeners. The normal stress 033 is determined from the equation of equilibrium:

E |[1(x} hx x; h
0-33:_1_‘/2 5?3_173 Viw+ 73+?1x3 o[+ (xLx,) (33)

Denoting the limit stress G33(X;, X;) on the bottom surface of the plate by S;3(X;, %):

Eh’ 3Eh;
P ) M ) RO o
2

one may present the function S;3(X;, X;) in the form of a trigonometric series:

S; (Xl > Xy ): i [Cl((on)) Sl(g) (Xl )+ Cl((Zn))S|(32) (Xl )]COS 6rEZ]X2 (33)

n=l1

where S)[;] (X1 » Xy ) is the normal stress on the upper surface of the stiffeners O 3?3] (X1 > Xy ):

st (x)=0y, _n (36)

2

If the stress o33 has to fulfill the condition (34), it assumes a form:

E |1(x h’x, K x;  x;h  3h’
Oy =— Al -2+ VAV | 2+ 2L Y (=S (37)
1-v2)|23 4 12 2 2 8 |°"
Subsequently, from the condition on the upper surface of the plate X; = —-—— one has:
E [1f h' h R h?
O3 =~ 2\~ oot VW, =S, =—¢ (%)
I-v7)[2| 24 8 12 2

Comparing (37) and (38), the equation of bending of thin isotropic plates with consideration of the influence of
shield forces may be obtained:

V2V2W:%+h£‘l’u; (39)

1

3

where D = allzh—z) is the known stiffness of a plate on account of bending,  — an external load applied to
-V

an upper surface of a plate.

In the equation (39) an unknown function S;3(X;, X;) exists, which shall be determined from the comparison to

the limit normal stress O 3('3) (Xl) on the upper surface of the stiffener Ne i; this stress is defined by the relation

(36). At first, one determines the stress O 3('3) (X1 ) from the equation of equilibrium (similarly as for the plate):

: 1(x; hix, hl), x: xh, h? i
0-3(3):_Ei 5 ?3_%4'5 ,(11)11"' - 1,(1}1~ (40)



Then, one satisfies the boundary condition on the upper surface of the stiffener

o =
)

and the basic equations of bending of the stiffener (bar) considering the shield forces may be obtained:

6.0 _ SV
EVI,(IL = ﬁ , (41)

(i)
Vi t

i3
h® _ .
where D. = % is the bending rigidity of the stiffener Ne i. The stress S).(g), which is treated as the load

applied to the upper surface of the stiffener Ne i, is unknown, as well as the deflection of this stiffener. To solve

the equation (41), one presents the stress 85('3) (X1 ) in a form of a trigonometric series:
st (x1)=22§;> cos8)x, 42)
m=l

2m-1)r
2a,

one obtains the ordinary nonhomogeneous differential equation of 4™ order for an unknown function v of the
deflection of the stiffener Ne i:

1111__22 cos8lx, ——ZL ' ( ) 2 cosh( Ki(k)xl) (43)

|m:l zkl

where O rg) = , while the coefficients Z?n) are unknown constant parameters. Replacing (41) by (42),

In a similar way the equations (39) may be transformed. Using the series (42) and the form (35), the function
Si3(X;) may be given in a form of a double trigonometric series:

o o 2 ) )
2 D Z [CIE;))Z,(;)]COS sllx cosdx, (44)
n=1 m=l i=0
Analogically one presents the external load:
=Y G cos sllx cos6Px, ; (45)
n=1 m=l1
where g, are the coefficient of the series.

Using (32), one determinates the derivatives of W,, which — after substitution to (39) — come to the following
equation:

+ hiiii{'\l fl()k) VK, cosh K X, }COS 81, (46)

This is a nonhomogeneous differential equation of 4™ order on account of an unknown function of the plate
deflection w.



THE SOLUTION OF THE BASIC EQUATIONS

One seeks the general solutions of the differential equations (43, 46) in a form of the sum of the general integral
of a homogeneous equation and the particular integral of a nonhomogeneous equation. The general solution of
(46) has a form:

w 4
W (Xl > Xy ) = ZZ Rv(k)Wv(k)(Xl » Xy ) (47
k=1 v=1

where W,(X;, %) are the functions of the plate deflection [22]. The unknown coefficients R are defined from
the boundary conditions of the plate. The particular solution of this equation has a form:

o oo N N '
W, = 22 B, cos 5,E]X1 cos 5,E2]X2 + zz {S,(,'])(k) cosh /K, %, COSSrEZ]Xz } (48)

2
m=1 n=1 n=l k=l i=0

The general solution of (43) shall be written in a form:
' ) it ) N :
V= CO(') + C§')XI2 + 2 Dr(];) cos 5,%]Xl + 2 Fl?k)) cosh( KX ) (49)
m=1 k=1

In (49) one knows only the coefficients Qn,, while all of the rest are unknown. The coefficients existing in (48),
(49) are determined from the conditions of the continuity of deflections on the surfaces of contact between the
plate and the stiffener.

One shall differentiate the particular integrals (48), (49) of the equations (43), (46):
— 2 2
ViViw=) Y B, (521 +611 )z cos8lx cos 82!, +

m=1 n=1
N N 2 : 2
+22 {Sq(n)(k)(Ki(k)—éf] )2cosh1/Ki(k)X1 cos6,£2]X2}, (50)
n=1 k=1 i=0

. had . N .
Vi), = Z D,(Y'])&E]4 cosdllx + 2 Flg'k))Kf(k) cos\/Kio X, (51)
m=1 k=1

Comparing (46), (50) to (43), (51), the relations between the parameters By, Qm and lCl((On))Z(O) + Cf(zn))zrﬁf )J as

m

well as between the parameters S,(ri])(k) and Nl(L)(k) may be obtained:

etz + i)

D
i 2 6 i
S(H%M(Ki(k) -5, )z “h Nistio Kigo (52)
4G 1 i i 6
v’ Dr :EZ‘(“) P KRR “Th Ly (Ko )2 (53)
i b

The remaining parameters are determined from the conditions of the continuity of deflection of the plate (47) and
the stiffener (48) on their common surfaces:

DY = B, cos s, (54)
n=1
Fi = 2 o)k COS slld (55)

n=1



The equation

w 4
DD RW, o (x,d, )= + %7 (56)

k=1 v=1

may be fulfilled — in an approximate way — only in two points: X; =0 and X; = &,

CONCLUSIONS

The new constructed model of thin isotropic rectangular plates reinforced on the bottom side by the series of stiffeners
distributed parallel is presented in the paper. In this model the conditions of the continuity of stress are satisfied. The obtained
system of equations has been solved analytically.

In the model, the boundary conditions at the plate edges are satisfied within a great accuracy.
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