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ABSTRACT

Plates resting on a subsoil are often met in constructions of the civil engineering. The main aim of the paper is twofold.
Firstly, to propose a new averaged model of medium thickness plates resting on a periodic Winkler’s 3D subsoil, based on
the non-asymptotic tolerance averaging technique, cf. Woźniak and Wierzbicki [19]. The main feature of the model is that it
describes the effect of period lengths on the overall behaviour of the plate. Secondly, to apply the non-asymptotic model to
analyse free vibrations of a plate strip on a periodic subsoil and show that the aforementioned effect plays a crucial role in
dynamic problems.
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INTRODUCTION

Plates interacting with a Winkler’s subsoil are applied as important elements of constructions in the civil
engineering, e. g. as elements of building foundations. In this paper a special case of these plates is the main
object of considerations, i. e. a medium thickness plate (homogeneous and anisotropic) resting on a periodic
Winkler’s subsoil, cf. Fig. 1. The plates of this kind can be met as constructions under roads, e. g. as concrete
plates resting on a weak subsoil, which is reinforced by a system of periodically distributed vertical pillars, made
of sand or gravel.

In the plates on a periodic subsoil, a small repeated element, called a periodicity cell ∆, may be distinguished.
These structures have the properties described by highly oscillating, periodic and also non-continuous functions.
An analysis of engineering problems of such plates is too complicated by using exact equations of the plate
theory. Hence, different averaged models were proposed, describing certain homogeneous plates with constant
homogenized properties instead of real periodic ones. The models based on the method of asymptotic
homogenization for periodic solids proposed in Bensoussan et al. [3] should be mentioned. The theory of
asymptotically homogenized plates with periodic structures was discussed in a series of papers, e. g. Caillerie



[5], Kohn and Vogelius [10], Matysiak and Nagórko [12], Lewiński [11]. However, in models of this kind the
effect of period lengths on the overall dynamic plate behaviour is usually neglected. This effect may be taken
into account by new non-asymptotic averaged models, based on the tolerance averaging technique. This method
was proposed and discussed for periodic composites and structures by Woźniak and Wierzbicki [19]. Dynamic
problems of different periodic structures were  investigated using the tolerance averaging procedure in many
papers, e. g. periodic plane structures in Wierzbicki and Woźniak [18], wavy plates in Michalak [13,14],
Kirchhoff plates in Jędrysiak [7,8], thin plates with stiffeners in Nagórko and Woźniak [15], Hencky-Bolle plates
in Baron [2], where it was shown that the effect of period lengths (called also the length-scale effect) cannot be
neglected in dynamics of periodic structures.

The main purpose of this contribution is to formulate a new non-asymptotic averaged model, describing the
above effect on non-stationary problems of medium thickness plates interacting with a periodic three-directional
Winkler’s subsoil. Moreover, the proposed model is applied as a tool to analyse free vibrations of a plate strip on
a periodic subsoil.

Considerations are based on the 2D-Hencky-Bolle plate theory assumptions, cf. Bolle [4], Hencky [6].
Moreover, these assumptions are extended on the effect of Winkler subsoil, cf. Ambartsumyan [1], Szcześniak
[16].

GENERAL FORMULATIONS OF THE THEORY
OF THE MEDIUM THICKNESS PLATE ON A WINKLER’S SUBSOIL

The orthogonal Cartesian co-ordinate system in the physical space may be denoted by 0x1x2x3 and the time co-
ordinate by t.  Throughout the paper subscripts α, β, …(i, j, …) run over 1, 2 (over 1, 2, 3), indices A, B,… (a,
b,…) run over 1,…, N (1,…, n). Summation convention holds for all aforementioned indices. Setting x≡(x1,x2)
and z≡x3, it may be assumed that the undeformed plate occupies the region Ω:={(x,z):-d/2<z<d/2, x∈Π}, where
Π is the midplane with length dimensions L1, L2 along the x1- and x2-axis, respectively, and d is the plate
thickness. A fragment of the plate example is shown in Fig. 1.

Fig. 1. Part of a medium thickness plate resting on a subsoil with periodic structure

A plate structure under consideration is consisted of an anisotropic and homogeneous medium thickness plate,
interacting with a periodic 3D Winkler’s subsoil, which rests on a rigid undeformable base, cf. Vlasov and
Leontiev [17]. Hence, all material and inertial properties of the plate, e. g. a mass density ρ and elastic modulae
aijkl, are constant. However, the subsoil has heterogeneous periodic structure in planes parallel to the plate
midplane, i. e. along the x1- and x2-axis directions with periods l1 and l2, respectively. Hence, it may be denoted
by ∆≡(-l1/2, l1/2)×(-l2/2, l2/2) the periodicity basic cell on 0x1x2 plane. It may be assumed that the cell size is
described by the parameter l≡(l1

2+l2
2)½, satisfying the condition d<<l<<Lmin, called the mesostructure parameter

(where Lmin is a minimum characteristic length dimension of the plate in its midplane). Hence, the properties of
the subsoil may be described by: a mass density per an unit area $ $ ( )µ µ= x  and Winkler coefficients ki (i=1,…3)
along the xi-axis directions, which can be  periodic functions in x=(x1,x2). In the subsequent considerations it may
be assumed k3=k(x), k1=k2=kt(x). These parameters of the subsoil may be defined following Vlasov and Leontiev



[17]. It is assumed that the plate cannot be torn off from the subsoil. A simplified problem of these structures is
analysed by Jędrysiak and Paś [9], where inertia terms of the subsoil are neglected.

If denoted by ui, εij, σij displacements, strains, stresses, respectively; by ijiu ε ,  virtual displacements and virtual
strains; by p+, p− loadings (in the z-axis direction) on the bottom and upper surfaces of the plate, respectively; by
qi loadings on these surfaces along the xi-axis directions, describing the effect of the subsoil. These loadings are
defined as:
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It may be assumed that the horizontal planes (z=const) are planes of elastic symmetry. This means a3αβγ=0,
a333γ=0 and aαβγδ, aαβ33, a3333 are non-zero terms of the elastic modulae tensor. If denoted
cαβγδ≡aαβγδ-aαβ33aγδ33(a3333)−1, bαβ≡ψaα3β3, where ψ is a shear coefficient.

The considerations are carried out in the framework of the 2D-Hencky-Bolle theory. Hence, the well known
assumptions may be recalled:

• the kinematic constraints

),(),,(),,(),,( 3 tutzutztzu xxxx =φ= αα (2.1)

where u(x,t) are deflections of points of the midplane, φα(x,t) are independent rotations; for virtual displacements
similar constraints may be obtained:

)(),(),(),( 3 xxxx uzuzzu =φ= αα (2.2)

• the strain-displacement relations

),( jiij u=ε (2.3)

• the stress-strain relations (under the plane stress assumption s33=0)

33 2, βαβαγδαβγδαβ ε=σε=σ bc (2.4)

• the virtual work principle
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with da=dx1dx2, which has to hold for arbitrary virtual displacements iu  defined as , , 3 uuzu =φ= αα  where

u ,αφ  are sufficiently regular, independent functions.

Equations (2.1)-(2.5) are the basis for the derivation of the well known differential equations for generalized
displacements φα, u of the medium thickness plate. For periodic structures under consideration obtained
governing equations have highly oscillating, periodic, functional and, in general, non-continuous coefficients.
Because the direct application of these equations to special problems is difficult, the equations are approximated
by the ones with constant coefficients. However, employing the asymptotic homogenization methods, usually
model equations may be obtained, which neglects the effect of the period lengths on the overall dynamic
behaviour of medium thickness plates on a periodic subsoil. To take this effect into account, the tolerance
averaging technique will be applied.

At the end of this section quantities, averaged over thickness:
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describing plate properties as a mass density per an unit area, a rotational inertia and bending stiffnesses,
respectively; which will be employed in the subsequent considerations, may be introduced.

TOLERANCE AVERAGING APPROACH

Introductory concepts.
The governing equations with constant coefficients, which describe the effect of period lengths, will be derived
by using the tolerance averaging method (proposed by Woźniak and Wierzbicki [19] for periodic composites
and structures) to the equations of motion of medium thickness plates on a periodic Winkler’s subsoil. In the
modelling procedure additional concepts introduced in this monography, i. e. an averaging operator, a tolerance
system, a slowly varying function, a periodic-like function, an oscillating function, will be used. Following the
aforesaid book some of them will be recalled.

Define by ∆(x)≡x+∆ a periodicity cell at x∈Π∆, Π∆={x: x∈Π, ∆(x)⊂Π}. The averaging operator for periodic
structures under consideration is given by
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∆∈Π∈ϕ≡>ϕ>=<ϕ< ∆∆

− ∫ dll (3.1)

for an arbitrary integrable function ϕ defined on the midplane Π. If ϕ is a periodic function its averaged value
calculated from (3.1) is constant.

The functions ϕ, Ψ defined on the midplane Π and a periodic function f may be introduced. If approximation

<fΨ>(x)≅<f>Ψ(x), x∈Π∆ (3.2)

holds for every f (with the required accuracy, dependent on f) then Ψ is called a slowly varying function. If for
every x∈Π∆ there exists a periodic function ϕx such that approximation

<fϕ>(x)≅<fϕx>(x), x∈Π∆ (3.3)

holds as above, then ϕ is referred to as a periodic-like function and ϕx is termed a periodic approximation of ϕ
at x.

The aforementioned formulae are known as the tolerance averaging approximations, cf. Woźniak and Wierzbicki
[19], where it was shown that these formulae are dependent on ∆ and a certain tolerance system T. It is possible
to write Ψ∈SV(T) for a function Ψ, which is slowly varying together with its derivatives and ϕ∈PL(T) for a
periodic-like function ϕ.

A periodic-like function ϕ with the condition <µϕ>(x)≅0 for every x∈Π∆, where µ(·) is a positive value periodic
function, is called an oscillating function. The set of oscillating functions with the weight µ is denoted by
PLµ(T). For constant values functions µ the condition takes the form µ<ϕ>(x)=<ϕ>(x)≅0 for every x∈Π∆.

In the modelling procedure the above concepts, defined by Woźniak and Wierzbicki [19], and lemmas and
assertions, formulated and proved in this work, are used.

Modelling assumptions.
In the tolerance averaging technique the additional assumption called the Conformability Assumption (CA), cf.
Woźniak and Wierzbicki [19], is formulated. It states that the generalized displacements – the rotations φα and
the deflection u – of the medium thickness plate on a periodic subsoil have to conform to this periodic structure,
i. e. they can be represented by periodic-like functions:

φα(·,t), u(·,t)∈PL(T)

Similarly, the virtual displacements u ,αφ  are periodic-like functions, i. e.:

)()( ),( TPLu ∈⋅⋅φα

These conditions may be violated only near the plate boundary.



Outline of the modelling procedure.
The modelling procedure of the tolerance averaging can be divided into three steps.

1) The generalized displacements of the plate (the rotations φα and the deflection u) can be decomposed in the
form

),(),(),(),,(),(),( ** twtwtuttt ⋅+⋅=⋅⋅ϕ+⋅ϕ=⋅φ ααα (3.4)

where ϕα is the averaged part of the rotations defined by ϕα(·,t)≡<φα>(·,t); w is the averaged part of the deflection
defined by w(·,t)≡<u>(·,t); )(),( 1* TPLt ∈⋅ϕα  are fluctuations of the rotations and hold the condition

0),(* >=⋅ϕ< α t ; w*(·,t)∈PL1(T) is a fluctuation of the deflection and satisfies the condition <w*(·,t)>=0.
Because φα(·,t), u(·,t)∈PL(T) it is clear that ϕα(·,t), w(·,t)∈SV(T). Hence, the functions ϕα(·,t) and w(·,t) are called
the macrorotations and the macrodeflection, respectively. Moreover, it may be assumed that the virtual
displacements of the plate u ,αφ  can be decomposed in the form similar to (3.4), i. e.:

)()()(),()()( ** ⋅+⋅=⋅⋅ϕ+⋅ϕ=⋅φ ααα wwu (3.5)

in which components satisfy similar conditions to those for components of the generalized displacements (3.4).
2) It is assumed that the fluctuations of the displacements in (3.4) and (3.5) can be approximated by the truncated
series (cf. Woźniak and Wierzbicki, [19]) in the following form, respectively:

),()(),(),,()(),( ** tVgtwtht AAaa xxxxxx =Φ=ϕ αα (3.6)

and )()()(),()()( ** xxxxxx AAaa Vgwh =Φ=ϕ αα (3.7)

where a=1,…, n, A=1,…, N. Functions gA, ha are known ones called mode-shape functions, obtained from
periodic problems for the periodicity cell. These functions gA or ha stand the system of N or n linear-independent
periodic functions, such that <gA>=0 and )()(),( , lglg AA O∈⋅⋅ α  or <ha>=0 and )()(),( , lhlh aa O∈⋅⋅ α . These
functions approximate the expected form of the oscillating part of free vibration modes of the periodic structure
of the plate, cf. Woźniak and Wierzbicki (2000). However, slowly varying functions )(),(),,( TSVtVt Aa ∈⋅⋅Φα

are new kinematic unknowns and )()(),( TSVV Aa ∈⋅⋅Φα  are new virtual displacements. The new unknowns

),( ta ⋅Φα  and ),( tV A ⋅  will be called the fluctuation variables for the rotations and for the deflection,
respectively.

3) Substituting (3.4) and (3.5) into (2.1)-(2.5), using (3.6) and (3.7) and also the tolerance averaging
approximations (3.2) and (3.3), after some manipulations the equations for the macrodeflection w, the
macrorotations ϕα and fluctuation variables  a

αΦ  and VA  may be obtained. These equations are presented in the
subsequent section.

GOVERNING EQUATIONS

Using the procedure of the tolerance averaging and denoting
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the governing equations of the tolerance model of medium thickness plates resting on a periodic subsoil are
derived:
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where w, ϕα, VA, a
αΦ  are basic unknowns, being slowly varying functions.

Summarizing, the tolerance model is defined by:

1° Equations (4.2) for N+1 and 2(n+1) unknowns, w, VA, A=1,…, N, and a
αα Φϕ , ;

2° Applicability conditions of the model, i. e. equations (4.2) have physical sense for the unknowns w(·,t),
VA(·,t) and ),(),,( tt a ⋅Φ⋅ϕ αα , being slowly varying functions for every t;

3° The model equations (4.2) describe the effect of period lengths by terms involving the mesostructure
parameter l;

4° The plate deflection may be approximated by means of the formula

),()(),(),( tVgtwtu AA xxxx +≈

and the plate rotations by

),()(),(),( thtt aa xxxx ααα Φ+ϕ≈φ

where the approximation „≈” is related to the assumption that the fluctuations of the deflection and the rotations
are defined in the form of the truncated series gA(·)VA(·,t), A=1,…, N, and ),()( th aa ⋅Φ⋅ α , a=1,…, n.

It may be noticed that to obtain the above equations, one must previously derive the mode-shape functions gA,
A=1,…,N, and ha, a=1,…, n, for every periodic plate under consideration as solutions to certain periodic
problems for the periodicity cell. However, the investigations are usually restricted to approximate forms of
these solutions and to small numbers N, n of mode shapes, what is sufficient from the computational point of
view, cf. Jędrysiak [7]. In the subsequent sections N=n=1 is assumed, i. e. only one mode-shape function g≡g1

and h≡h1.

In order to evaluate obtained results the homogenized model of medium thickness plates resting on a periodic
subsoil may be introduced. It is governed by equations in the form:
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where the effect of period lengths is not taken into account. Coefficients in the above equations are defined by
formulae (4.1). Equations (4.3) are obtained from equations (4.2) after neglecting terms with the mesostructure
parameter l.

AN APPLICATION TO ANALYSE FREE VIBRATIONS OF A PLATE STRIP

Free vibration frequencies within the tolerance model.
As an example of the application of the proposed model, free vibrations of a plate strip, with the span L along the
x1-axis, resting on a periodic subsoil will be analysed, cf. Fig. 2. Hence, loadings, p=0 were neglected. It may be
denoted x≡x1 and assumed that the plate strip is simply supported on the opposite edges x=0, L and is made of an
isotropic material with constant properties - the Young’s modulus E, the Poisson’s ratio ν, the mass density ρ.



Fig. 2. Part of a plate strip on a subsoil with periodic structure

However, the subsoil is made of periodic, piece-wise constant material. Hence, the Winkler coefficients k, kt are
given by
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and the mass density of the subsoil is assumed as
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where γ∈[0,1], cf. Fig. 2. For the considered periodicity cell, the mode-shape functions are assumed in the form

g(x)=h(x)=lcos(2πx/l) (5.3)

It mat be denoted 11
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111111 ~ ,~ mmmm ==  have been obtained. Hence, the equations of free vibrations in the framework of the
tolerance model (4.2) take the form of the system of four differential equations for w, V, ϕ1, Φ1:
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and the independent system of two differential equations for ϕ2, Φ2:
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Assume solutions to equations (5.4) and (5.5) in the form satisfying boundary conditions of the simply supported
plate strip:
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where α is a wave number, 101010 ,,,,, CCBBAA  are amplitudes.
Now, the solutions (5.6)1,2,3,4  may be substituted for (5.4) and denoted:
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After some calculations that were obtained at the characteristic equation within the tolerance model for
vibrations of w, V, ϕ1, Φ1 was arrived at:
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and also
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from equation (5.7) the following formulae of free vibration frequencies are derived:
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where ω−1, ω−2 are the lower free vibration frequencies for w, ϕ1; ω+1, ω+2 are the higher free vibration
frequencies for V, Φ1. The higher frequencies are related to a periodic structure of the plate strip on a periodic
subsoil.
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the characteristic equation within the tolerance model for vibrations of ϕ2, Φ2 has got the form
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from equation (5.9) the following formulae of free vibration frequencies are derived:
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where ω− is the lower free vibration frequency for ϕ2; ω+ is the higher free vibration frequency for Φ2, which is
related to a periodic structure of the plate strip on a periodic subsoil.

In the subsequent sections the analysis will be restricted only to the free vibration frequencies for w, V, ϕ1, Φ1,
which are determined by the formulae (5.8).

Free vibration frequencies within the homogenized model.
For free vibrations of the plate strip within the homogenized model, equations (4.3) take the form of the system
of two equations for the macrodeflection w and the  macrorotation ϕ1:
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and the independent equation for the macrorotation ϕ2
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If substitute solutions (5.6)1,3 for equations (5.10) and denote:
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the characteristic equation within the homogenized model for vibrations of w, ϕ1 has the form
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From the above equation the following formulae of free vibration frequencies may be derived:
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where 21  , ωω  are the lower free vibration frequencies for w and ϕ1.
Now, the solution (5.6)5 may be substituted for (5.11) and denoted:
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Hence, the characteristic equation within the homogenized model for vibrations of ϕ2 has the following form
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From the above equation one free vibration frequency of the homogenized model is derived

d
e
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which is the lower frequency for ϕ2.

The following considerations will be restricted only to the free vibration frequencies for w, ϕ1, which are
determined by formulae (5.12).

Calculation results.
Introduce dimensionless parameters:
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where 2,12,12,1  , , ΩΩΩ ++−−  are frequency parameters, which describe the free vibration frequencies determined

by (5.8)1,3, (5.8)2,4, (5.12)1,2, respectively; q is the dimensionless wave number; 12 −ρ≡χ E .

Fig. 3. Diagrams of dispersion curves of relations Ω-q



Results of calculations are presented in Fig. 3 as diagrams of relations between the frequency parameters
Ω  and the dimensionless wave number q ( q−Ω ). Calculations are made for the Poisson’s ratio

6/1=ν , for the shear coefficient 6/5=ψ , and for parameters: ]5.0,0(∈q , d/l=0.2,

,1/ ,0// ,5/ ,10/ ,5.0 0010100
4

0 =µµ=µµ====γ − kkkkEdk t  with the parameter γ  describing a length of

a cell part with the Winkler coefficients 00  , tkk  and the mass density 0µ , cf. (5.1), (5.2) and Fig. 2.

CONCLUSIONS

The tolerance averaging technique, proposed for periodic composites and structures by Woźniak and Wierzbicki
[19], and applied in this paper to medium thickness plates resting on a periodic Winkler’s subsoil, leads to the
governing equations with constant coefficients of a new averaged model. This model describes the effect of
period lengths on vibrations of plates of this kind and is called the tolerance model.
After the analyses of new obtained results some final remarks were formulated.

1. The obtained tolerance model is governed by equations, which involve terms dependent explicitly on the
mesostructure parameter l (describing the size of the periodicity cell). Hence, this model makes possible to
investigate certain phenomena, caused by the internal periodic structure of the system of the plate and the
subsoil, in dynamic problems.

2. One such phenomenon is manifested in additional higher free vibration frequencies, which cannot be
obtained in the framework of known homogenized models.

3. The results obtained in the presented example make possible to formulate some comments, cf. Fig. 3.
• The values of the first lower frequency calculated within the tolerance model are nearly identical with values

of this frequency by the homogenized model.
• The values of the second lower frequency by the tolerance model are smaller than values of this frequency

by the homogenized model.
• The values of the first higher frequency by the tolerance model, related to the fluctuation of the plate

deflection, are smaller than values of the second lower frequency related to the macrorotation (i. e. the
averaged rotation).

• The values of the second higher frequency by the tolerance model, related to the fluctuation of the plate
rotation, are bigger than values of the second lower frequency, but differences between them are small.

Certain other dynamic problems of medium thickness plates resting on a periodic Winkler’s subsoil will be
studied in the forthcoming papers.
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