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Częstochowa University of Technology, Faculty of Civil Engineering, Poland

ABSTRACT

The paper gives a focus on the problem of acoustic waves reflection from a layer of varying density situated
between two homogeneous materials. Presented results illustrate the dependence of reflection and transition
coefficients on frequency and on the structure of the transition layer.

Key words: rubberlike materials, layered composites, acoustic waves reflection and transmission

INTRODUCTION

It may be considered that the harmonic wave, propagating in layered media perpendicularly to the layers and the
small motion ui (i=1,3) in the k-th material, consists of two sinusoidal waves (Fig.1) the first running to the right
and second one running to the left
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where kk cc (, are the wave speeds for the longitudinal and transverse wave respectively. Here and bellow all
quantities and functions connected with the propagation of the transverse wave have got the “ ”mark.



Fig. 1. Layered composite under consideration

CONSTUTIVE RELATIONS

The consideration the reflection transmission problem of acoustic waves from a layer of varying density in a
compressible isotropic rubberlike solids is the aim of this paper. A purely mechanical theory is considered. The
results are obtained for the special form of Blatz and Ko strain energy function [2], which is representative for
foamed polyurethane rubber:
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where I1and I2 are the principal invariants of the deformation tensor,µ  and ν  are the shear modulus and
Poisson’s ratio for infinitesimal deformation from the natural reference state. It is easy to find ( [2], [6] ) since
the value of the Poisson’s ratio in this case is 25.0=ν .

LINEARIZED EQUATIONS OF MOTION IN THE K-TH LAYER

For the motion defined by (1) the linearised system of equations of motion is reduced to two independent
uncoupled wave equations with constant wave speeds kk cc (, :
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Suppose that two layers made of two different elastic materials are rigidly coupled at X=Xk (Fig.1). The
linearized boundary value problem is to consider. The equations of motion must be complemented with the
continuity conditions at the interface. When two solids are in rigid contact, the displacement vector and stress
one must be continuous from one medium to the other. The following conditions for the longitudinal wave are
being obtained.
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and for the transverse wave
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TRANSITION MATRICES

The conditions described above lead to the following relations between the amplitudes of the longitudinal and
transverse waves in the regions 1−k  and k respectively
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Fig. 2.  Regions described by the parameters κk and αk of the transitions matrix at the interface  X=Xk

The complex valued matrices are the transition ones for the X=Xk interface. They possess the following
symmetries

                                              2112 )()( kk MM =   ,  1122 )()( kk MM =                                         (9)

where the bar means the complex conjugate value. When only the density changes in every layer and the shear
modulus and Poisson’s ratio are constant, the impedance ratio κ is the same for the longitudinal and transverse
wave and equals the density ratio
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REFLECTION AND TRANSMISSION COEFFICIENTS

Two different homogeneous materials marked with lines (Fig.3) are to be considered now. The complex
amplitudes in these regions are respectively A0, B0, An and Bn. There are n-1 different layers between the
homogeneous regions and n interfaces. The reflection and transmission coefficients for composite layered body
are defined as
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Fig. 3. Geometry of the layered transition zone between two homogeneous regions

Taking now rXX == 10 we obtain 01 =α and the other kα ( k = 2,3...n ) coefficients take the different
nonzero values. The density of the foam rubber is smaller then the density of solid rubber, but the elastic
constants µ  and ν  can remain unchanged for modified foam rubber mixtures when the density )(Xρ=ρ
varies.

MODIFIED TRANSITION MATRICES

It may be assumed (Fig.4) that the composite body consists of two homogeneous regions with densities rρ and

sρ and the inhomogeneous transition zone between, in which the density changes continuously from rρ  to sρ .
The propagation speed in the transition region also changes continuously with the variation of the density from

rc  to sc .
Fig. 4. Density profile in the inhomogeneous transition region



The calculations of the reflection and transmission coefficients simplify considerably when the transition zone
[r,s] and speed interval [ rc , sc ] are divided into n layers of different thickness in such a way that the

parameters kα and kκ ( k = 1,2,3...n ) have got the same values in every layer and all transition matrix kM  are

equal constMM k == . Transition from one homogeneous material to another demands multiplication of  n

complex valued matrices kM . It is possible to give simple analytic approach [1] for calculation of the product
nM )(  in this case. In this treatment it is necessary to include additionally two layers of homogeneous material

on both sides of the transition zone, which thickness may be easy calculated (Fig.5).

Fig. 5. Geometry of the transition zone with constant parameters κk and αk of the transition matrices
            at all interfaces

It is obtained respectively for the equal impedences ratio
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It may be taken into account in (12)2 that constc kk =ρ2 and that the expression on the left hand side of (15) is
the sum of the geometric progression with common ratio κ . The values of α and κ  coefficients depend on the
speed ratio (13)1 and the number of layers n, the first one depends also additionally on the frequency of the
incident wave and the parameter p, which describes the rate of speed changes in the transition zone and is
defined below.

Fig. 6. Approximation of the speed c(X) in the transition zone by step function
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                                                 0, →α∞→β⇒→ tgrs  jump discontinuity

Now all the transition matrices kM  are equal and take the form
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where κ and α  are defined by (13)2 and (16) . The matrix M  with symmetries (9) may be transformed to the
following form [1]:
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where [ ]ijMm det=  on condition that
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If the condition is satisfied, all constant EDC ,,,ϕ  in the representation (19)2 are real and may be calculated if
compared with (19)1. If the condition (20)1 is replaced by following one
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the matrix (19) may be transformed to more convenient form
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The real value of the expression mM /11  may be smaller or greater than 1. 1ϕ  or 2ϕ  respectively (Fig.7)
may be calculated what leads to the adequate form of the transition matrix
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Fig. 7.  Functions φ1 φ2 determining the form of the transition matrix

To find the relationship between the amplitudes of the waves in both homogeneous regions connected by the
zone of  n-1  virtual layers with  n  interfaces, the matrix M (in the form (19)2 or (22)) should be first raised to
the thn −  power.
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The result is very simple (comp.[1]), because constant multipler m  and all arguments of the trygonometric
functions become multiplied n times. Analogous result as above may be obtained for the representation (22). The
amplitudes of the waves in both homogeneous regions satisfy also the following equation
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Now 0=nB  may be taken and 0A , 0B , nA  considered as the amplitudes of the incident reflected and
transmitted waves. The reflection and transmission coefficients (comp.(11)) are equal respectively
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Fig. 8.  Incident wave and assumed reflection – transmission patterns

If we take 00 =A  in analogous way the results are
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After calculations of  all terms of the matrix [ ])(n
ijM  the final results are
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It follows from (29) that both expressions depend only on the speeds ratio Tκ  in both homogeneous regions,
number  n  of the layers, and on the ratio p/ω (comp.(24)). For n=1, it follows from (29) the well known
results for the jump discontinuity
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NUMERICAL RESULTS

Fig. 9.  Density values assumed in the homogeneous regions

Some experimental results for several elastomers were presented in [6]. The density of the solid rubber is
3kg/m911=ρR . In agreement with the main conclusions of this paper, the following elastic constants and

densities for the foam rubber: µ=0.221 MPa, ν=0.25 were assumed. The density of the foam rubber is smaller
then the density of solid rubber Rr ρ<ρ  , Rs ρ<ρ and the elastic constants µ and ν can remain unchanged for
modified foam rubber mixtures when the density varies. The calculations were made for two values of the
density ratios 9.0/ =ρρ Rr and 30./ Rs =ρρ  in both homogeneous regions (Fig.9). In the transition zone

the density )(Xρ=ρ  changes continuously  from rρ  to sρ . The assumption about density ratios reflects
properly the true attributes of foam rubber produced in this day and age.The physical properties of four foam
rubber composites were studied experimentally in [1]. The ratio of densities (shear moduli) of every pair of two
different patterns chosen arbitrarily from the whole series, ranges from 251./ sr =ρρ  ( 1=µµ sr / ) to

273./ sr =ρρ  ( 351./ sr =µµ ). The speeds of the transverse wave propagation in m/sec are equal

41.16=rc( , 43.28=sc(  respectively and 33.0/9.0/ ===κ rsT cc (((
. The speeds of the

longitudinal waves are diffrent, but because of the same elastic constant in both homogeneous regions and in the

transition zone the ratio of 33.0/9.0/ ===κ rsT cc has the same value as previous. For the jump
discontinuity

                                    732.0,268.0,3,1 )1()0()1( ====κ=κ= trrn T  .                           (31)

was obtained.

The case of nonhomogeneous transition zone, modelled as layered region of n-1 virtual layers with n interfaces
and equal transition matrices Mk = M, ( k = 1,2..n ) was considered. It was denoted bellow as w(n), depending on
n  expression on the right hand side of (23).
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where (comp. (13)1,2)   constc/c rsT ==κ ,  ( ) n/
T

1κ=κ   and  p/q ω= .

The function )(nw  with variable parameter q (comp. (23)) for all ∞→n  takes the values greater or smaller
than 1 depending on the value of q (Fig. 10). The form of the transition matrix (19)2 or (22) respectively may be
chosen.



Fig. 10.  Plot of the function ( )m/MRe)n(w 11=  for different values of the parameter q

For constTT =κ=κ (
 the form of the matrix depends only on the value of the parameter q. It is easy to see

that for q>1.02 the matrix has the form (19)2. If q changes in the limits  1402.1 ≤≤ q  (Fig.11) small
fluctuations of the value of the transmission coefficient from the value 0.732 which is representative for the jump
discontinuity may be observed.

Fig. 11.  Variations of  the tramsmission and reflection coefficients for 14021 ≤≤ q.

The reflection coefficient decreases with the growth of q. If q takes the values greather than q=30 (Fig.12) the
reflection coefficient rapidly vanishes and the transmission coefficient has got stable value equal ≈ 0.76.



Fig. 12.  Variations of  the tramsmission and reflection coefficients for 15014 ≤≤ q

It may bee assumed now that q changes in the limits 5.010 4 ≤≤− q . The fluctuations in these case are
extremaly small (Fig.13). Both coefficient have got practically the values equivalent to the ones for jump
discontinuity. It is easy to made the generalisation about the results described above. We take the constant finite
value for p. For short waves, when ω  increases, the inhomogeneous transition zone puts out the reflected wave
and reduces the transmission wave.

Fig. 13.  Variations of  the tramsmission and reflection coefficients for 5010 4 .q ≤≤−
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