
Electronic Journal of Polish Agricultural Universities is the very first Polish scientific journal published exclusively on the Internet, founded
on January 1, 1998 by the following agricultural universities and higher schools of agriculture: University of Technology and Agriculture of
Bydgoszcz, Agricultural University of Cracow, Agricultural University of Lublin, Agricultural University of Poznan, University  of  Podlasie
in Siedlce, Agricultural University of Szczecin and Agricultural University of Wroclaw.

ELECTRONIC
JOURNAL
OF POLISH
AGRICULTURAL
UNIVERSITIES

2005
Volume 8

Issue 4
Topic
CIVIL

 ENGINEERING

Copyright © Wydawnictwo Akademii Rolniczej we Wroclawiu, ISSN 1505-0297
BARON E.. 2005. ON THE DYNAMIC BEHAVIOUR OF UNIPERIODIC PLATES MADE OF ORTHOTROPIC ELEMENTS
Electronic Journal of Polish Agricultural Universities, Civil Engineering, Volume 8, Issue 4.
Available Online http://www.ejpau.media.pl

ON THE DYNAMIC BEHAVIOUR OF UNIPERIODIC PLATES
MADE OF ORTHOTROPIC ELEMENTS
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Department of Building Structures Theory, Silesian University of Technology, Gliwice Poland

ABSTRACT

The aim of this contribution is to propose a new non-asymptotic 2D-model of non-homogeneous Reissner type
elastic plates with one-directional periodic (uniperiodic) structure. This model was obtained by tolerance
averaging technique (TAA) describing effect of repetitive cell size l (and at the same time the period-length of
in-homogeneity) on the overall plate behaviour. The new feature of the proposed model is the possibility to
apply the analysis of plates having thickness of an order of the period-length. So far, the non-asymptotic
2Dmodel of Reissner-type uniperiodic plates was formulated under assumption that the plate thickness is very
small compared to the period-length.

Keywords: uniperiodic composite plates, Reissner type elastic plates, tolerance averaging technique, modeling,
dynamic.

1. INTRODUCTION

Plates with uniperiodic structure could also be used in civil engineering. There are first of all composite plates.
However, plates made of traditional materials represent such structure. The concrete plate reinforced by system
of rolled steel section (I-bar) can be example of this case. In this paper, the example of glued timber plate (that is
composed of the elements cut along and across the fibres) was considered.

The object of consideration is the description of dynamic behaviour of a medium thickness uniperiodic, elastic
composite plates, i.e. plates with a periodic non-homogeneous structure in one direction. The above plates are
composed of a large number of repeated elements having identical form, dimensions and material properties. The
geometry of the uniperiodic plate, apart from the global midplane length dimensions L1, L2 and constant
thickness d, is characterized by the length l which determines the period of structure in-homogeneity. A fragment
of the aforementioned plate is shown in Fig.1.



Fig. 1. An example of medium thickness uniperiodic plate

The dynamic behaviour of uniperiodic composite plates is described by partial differential equations (PDEs)
with functional coefficients which are periodic, rapidly oscillating, and discontinuous with respect to one
Cartesian coordinate (say, the 1x -coordinate) along which the plate structure is periodic. The direct application
of these equations to the analysis of special problems in most cases is not possible. It is known that even a direct
numerical solution of these equations constitutes an ill-conditioned and complicated problem, cf. [4]. The
fundamental modelling problem in how to obtain an effective 2D-model represented by PDEs with constant
coefficients. This problem has been solved by using the homogenization theory [5]. [7]; homogenized models of
medium thickness periodic plates were studied in a series of papers; s.e.g. [9], [10], [11]. On the other hand, the
use of asymptotic homogenization method results in neglecting the length – scale effect, i.e. the effect of the
period l on the macrodynamic plate behaviour. In many dynamic problems, however, this effect cannot be
neglected, therefore a new non-asymptotic approach to the modelling of plates with periodic structure has been
presented in [14]. This approach is a certain generalization of the tolerance averaging technique [13], which
makes it possible to investigate the length – scale effect. So far, the tolerance averaging technique was applied in
the modelling of medium thickness uniperiodic plates under assumption that the period l is very large as
compared to the maximum plate thickness [1], [2], [3]. The main aim of this paper is to formulate a new non-
asymptotic model of Reissner – type uniperiodic plates with period of an order of the plate thickness.
Considering the above assumptions, only the thin plates have been modelled so far, [12], [14]. The non-
asymptotic effective 2D – model of Reissner – type plates with bi-directional periodic structure having thickness
of an order of the plate periods length has been discussed in [15].

The proposed model will be obtained by the tolerance averaging technique, applied directly to the 3D –
equations of linear elastodynamics. Using the Hencky – Bolle kinematics assumption, we shall derive a non–
asymptotic 2D–model of medium thickness uniperiodic plates. Contrary to the homogenized 2D–model, it makes
possible to determine higher–order vibration frequencies caused by the plate inhomogeneity. It should be
noticed, that in general, plates with uniperiodic structure cannot be treated as a special case of plates with
bidirectional periodicity [15].

The general model equations obtained in this paper will be transformed into a form which would enable the
investigation of dynamic problems for uniperiodic composite plates made of orthotropic elements. The
considerations are illustrated by the analysis of vibrations of rectangular plate.

Throughout the paper, subscripts ,...),(,..., jiβα  run over 1,2 (1,2,3), whereas superscripts A,B,... take the
values 1,2,...N. The summation convention holds for all aforementioned indices.

2. BASIC ASSUMPTIONS AND DENOTATIONS

Let 21xOx  be the orthogonal Cartesian coordinate system in the physical space 3E , and Ω  are a region
occupied by the solid under consideration in its reference state. Let ( ) = +x x∆ ∆  be a periodic cell of the

central of point 3
i{ }= ∈x x E . By li we denote the period of the solid inhomogeneity in direction of the xi –

axis. It will be assumed that li are sufficiently small when compared to the characteristic length dimension of Ω



measured along the xi – axis. It is possible to consider three special cases of periodic inhomogeneity, c.f. [14]. In
this paper, considerations will be restricted to the bending of plates with uniperiodic structure. Therefore, for a
solid periodic in direction of the x1 – axis 1 ( , )= = − l 2 l 2∆ ∆  is the periodicity interval and l = l1 is the

period of in-homogeneity. The averaged value of an arbitrary integrable function f(x) (defined on Ω ) inside the
periodicity interval is denoted as

{ }1 2 3 1 o o∈ ∈ ⊂∫x x x x
1

1

x +1 2
3

x -1 2

1f( ) = f(y ,x ,x )dy Ω , Ω = E ,∆( ) Ωl (2.1)

The tolerance averaging technique is based on the definition of the averaging operator (2.1) and concept of a
slowly varying function of an argument x. For solid with a uniperiodic structure, it is a slowly-varying function
of an argument x1, we shall mean a sufficiently regular function F(x), which for an arbitrary integrable function
f(x) satisfying the following tolerance averaging approximation (TAA)

≅x x) xfF ( ) f ( F( ) (2.2)

where ≅  is a certain tolerance relation [13]. If condition (2.2) holds for all continuous derivatives of F (if they
exist) then we shall write () ( )⋅ ∈F SV T∆ . By T we denote the set of all tolerance relations regarded in the
modelling procedure.

Let i ∈x xu( ,t), Ω  be a displacement field at time t from the reference configuration of the uniperiodic elastic

solid. For solid of this structure, we assume the mass density scalar field ρ  and the components ijklA  of the
elastic modulae tensor are l-periodic function of x1-coordinate and are independent of x2-, and x3-coordinate. We
assume also that the solid is subjected to initial stress o

ij iσ ,b  is a constant body force field.

From the principle of stationary action for the functional depending on the displacement field components we
obtain the following linearized equations of motion for an uniperiodic prestressed solid.

( ) o
ijkl k,l kj i,jk i i&&jA u , +σ u -ρu +ρb=0 (2.3)

Equations (2.3) has functional coefficients ijklA  and ρ  which are highly oscillating (frequently non-continuous)

with respect to the argument x1. In most cases the prestressing field tensor o
ijσ  is also periodic and non-

continuous.

The modelling problem we are going to solve is to derive from (2.3) a system of equations with constant
coefficients (differently – independent of x1).

3. MODELLING APPROACH

The starting point of consideration is Eqs. (2.3). The modelling procedure is based on the tolerance averaging of
the above equations. We are to formulate an approximate model of the uniperiodic solid, which will be
represented by equations with constant coefficients. The proposed modelling technique is based on two
assumptions. To formulate these assumptions we introduce the following decomposition of displacements:

o
i i i(x x xu ,t)=u ( ,t)+r( ,t)             (3.1)

where 
-1o

i i ix x xu ( ,t)= u ( ,t)= ρ ρu ( ,t)  is an averaged part of displacement and i ⋅r( ,t)  is a part of
residual displacement field.



The first modelling assumption states that averaged displacement field under consideration are a slowly varying
functions for every time t: o

i 2 3⋅ ∈ ∆u ( ,x ,x ,t) SV (T) . Under this assumption, from (3.1) and (2.2) it follows that

i xρr ( ,t)=0  and that is why ri will be referred to as the fluctuating part of displacements.

The second modelling assumption states that the fluctuation of displacements field, represented by ri and caused
by the inhomogeneous periodic structure, conforms to this structure. It means that in every periodicity interval
fluctuations ri can be approximated by periodic functions in the form of finite sums

),()(),( tVxhtr A
i

A
ii xx ≅ (3.2)

where 2 3⋅AV ( ,x ,x ,t)  for every time t are slowly varying functions 2 3⋅ ∈A
∆V ( ,x ,x ,t) SV (T)  and A

i 1( )h x  are certain

linear independent periodic functions satisfying the conditions A A A
i i 1 i,10, ( ) ( ) , ( )= ∈ ∈ρh h x O l lh O l . The

approximation �  depends on the number of terms on the right-hand sides of (3.2).

Scalar functions 2 3⋅AV ( ,x ,x ,t)  constitute new kinematical variables called fluctuation amplitudes and are the

basic unknowns. Functions A
i 1( )h x  are assumed to known a priori and are referred to as mode-shape function.

In general, A
i ()⋅h  represent free periodic vibrations of 3D-periodic cell and can be treated as eigenvector related

to certain eigenvalue problem. An alternative specification of the mode-shape function based on the mass
discretization of the periodic cell is also possible.

In order to derive the governing equation for unknown fields o A
i ,u V  we shall introduce into the action

functional displacement field ui in the form

o A A
i i i 1x x xu( ,t)=u ( ,t)+h (x )V ( ,t) (3.3)

Applying the principle of stationary action and averaging the obtained result, taking into account TAA (2.2),
restrict consideration to problem in which ijkl()⋅A  and ()⋅ρ  are even and A

i ()⋅h  are odd functions, after some

manipulation we obtain the following system of equations for o
iu  and AV :

( )o o A A o o
i ijkl k,l ikl1 k,1 j kl i,kl i

A B B A B B A B B
i i i2k2 i k ,22 i3k3 i k ,33

A B B A o o A B B
i1k1 i,1 k,1 ijk1 k,1 i,j 11 k,1 k,1

o A B B o A B B
22 k k ,22 33 k k ,33

, 0

V

0

− + − − =

− − +

+ + + +

− − =

&&

&&

u A u A h V u b

ρh h V A h h V A h h V

A h h A h u h h V

h h V h h V

ρ σ ρ

σ

σ σ

(3.4)

Formulae (3.4) represent the system 3+N equations for 3+N unknown function o A
i o( , ), ( , ), ∈u t V t Ωx x x . The

equations have constant coefficients and represent a certain macroscopic model of a prestressed uniperiodic
solid. It has to be emphasized that solutions o A

i ,u V  have physical sense only if they are represented by slowly

varying function. Let us observe that A B A B
k k i3k3 i k,h h A h hρ  depend on the period l and describe the length

scale effect on the overall behaviour of the solid.

For homogeneous solid, in the absence of initial stress, equation (3.4)1 lead to the well known form and (3.4)2

yields A 0=V  provided that initial as well as boundary condition for AV  are homogeneous. It becomes
remarkable that for uniperiodic solid in which 2

1(0, ) ,= × ⊂L RΩ Φ Φ , the boundary conditions for AV  can

be formulated only on boundaries 1(0, )×∂L Φ .



4. APPLICATION TO MEDIUM THICKNESS PLATES

Setting now x = (x1,x2), z = x3, we assume that equations (3.4) hold in a region Ω , occupied by a Reissner-type

undeformed plate with constant thickness d, defined by { }( , ) : ,= < ∈z z d 2Ω Πx x where rectangular

1 2(0, ) (0, )= ×L LΠ is the plate midplane.

The plate under consideration has a periodic non-homogeneous structure, with the period l = l1, only in the
direction of the x1 – axis, i.e. uniperiodic structure. Therefore 1 1( , )− + +l 2 x x l 2 , for every

1 1( , )∈ −x l 2 L l 2  is the periodicity interval which has its centre at an arbitrary point with the x1 – axis. In

this case, the periodicity cell is defined by ( ) ( )1 12 , 2 ,− + × −x l x l 2 d d 2  The dimension l is of an

order the plate thickness d and sufficiently small compared to ,α α<<L l L . The plate material is assumed to be

elastic and the components ijklA  of the elastic modulae tensor as well the mass density ρ  independent on x2, z
and l – periodic function with respect to x1 coordinate. Subsequently we define

1
33 33 3333 3 3( ) ,−

αβγδ αβγδ αβ γδ αβ α β= − =C A A A A B K A

where K is the shear coefficient of the medium-thickness plate theory,

Instead the operator (2.1) we introduce the following two kinds of averaging of an arbitrary integrable function
f(x,z,t) inside periodicity cell:

1

1

x

1 2 1
x

d 2

d 2

1( , ) ( , , ,

1( , ) ( , , )

+

−

−

=

=

∫

∫

l 2

l 2

f z,t f y x z,t)dyl

f t f z t dzd

x

x x
(4.1)

for l – periodic function, the averaged (4.1)1 is independent of x1.

We introduce the Hencky-Bolle kinematical assumption in the known form

3

α αu ( ,z,t)=z ( ,t)
u ( ,z,t)=w( ,t)

ϑx x
x x

(4.2)

where (, )⋅w t  is displacements of point of the mid-plane Π  and (, )α ⋅ tϑ  are independent rotations.

According to the modelling assumption, outlined in the section 3, exist decompositions of w and αϑ  into slowly

varying parts ow , o
αϑ  and to residual displacement parts approximated by finite sums A A

i 1( ) ( , , )h x V z tx .

Assuming that A
3 1( ) 0=h x  and A A( , , ) ( , )=V z t z tψx x  we obtain the components of displacement field in the

form
o A A

1
o

3

( , , ) ( , ) ( ) ( , )

( , , ) ( , )
α α α= +

=

u z t z t zh x t

u z t w t

ϑ ψx x x
x x

 (4.3)

where the averaged midplane deflection o( , )w tx , averaged rotations o( , )α tϑ x  and fluctuation amplitudes
A( , )tψ x  are slowly varying function and constitute a system of new basic unknowns.

Substituting the decomposition (4.3) into the action functional, neglecting the body forces and denoted
12= 2j d , after some manipulations we arrive at the system of equations



( )

o o o o
, ,

A A o o o o
1 ,1 , , 3 ,

o o o o o
, , ,

A B B A B A B A B B
1 1 ,1 ,1 2 2

A B B A o
2 2 ,22 1 ,1 ,

( )

0

( ) 0

α αβγδ γ βδ αβ β β

αβγ γ β γβ α γδ γ α γ

αβ α α β γα γβ

α α α γ α γ αβ α β α γ α γ

α γ α γ αβγ γ αβ

− + + +

− − + =

− + − =

+ + + +

− + +

&&

&&

&&

j j C B w

j C h j z

w B w w

j h h j C h h B h h C h h

j C h h j C h j

ρ ϑ ϑ ϑ

ψ σ ϑ σ ϑ

ρ ϑ σ

ρ ψ ψ

ψ ϑ A B B A B B
11 ,1 ,1 22 ,22 0γ γ γ γ− =h h j h hσ ψ σ ψ

(4.4)

The system 3+N equations with constant coefficients (4.4), represent the macroscopic 2D – model of the
uniperiodic, medium thickness composite plate. Those equations have to be considered together with two initial
conditions for wo, o

αϑ  and Aψ , which are obtained from the conditions for αu , by means of formulae (4.3).

Moreover, the averaged plate deflection wo and averaged rotations o
αϑ  have to satisfy boundary condition in the

form similar to that used in the Reissner plate theory. On the other hand, boundary conditions for Aψ  have to be
known only for edges x2 = 0, x2 = L2. It follows that for edges x1 = 0, x1 = L1, the boundary conditions can be
satisfied only by the averaged part of the rotations o

αϑ .

Let use observe that the coefficients A B
α αh hρ , A B

2 2α γ α γC h h , A B
αβ α βB h h , A B

22 γ γh hσ  depend on the

period l (strictly l2), thus, the equations (4.4) describe the length scale effect on the overall behaviour of the plate.
Neglecting terms involving the period l lead to the system of linear algebraic equation for Aψ . In this case, Aψ
do not enter the boundary conditions and play role of certain internal variables. In general, those internal
variables can be eliminated from (4.4) and we obtain the system of three equations for wo and o

αϑ  as the basic
unknowns. This system representing certain approximation of the homogenized 2D–model of the uniperiodic
plate under consideration. Notice that, for a homogeneous plate, after setting l→ 0 and neglecting the initial
stress, we obtain Aψ = 0 and (4.4) coincide with the known Hencky-Bolle plate equation.

As is was mentioned, equations (4.4) represent the non-asymptotic 2D – model of the Reissner – type plate with
uniperiodic non-homogeneous structure. This model was obtained by the tolerance averaging technique applied
directly to the 3D – equations of elastodynamics, in contrast to the approaches proposed in [1], [2], [6], where
2D – equation of plates with oscillating coefficients together with assumption that the period l is very large to the
plate thickness d, have been used as a starting point of modelling. The obtained equations (4.4) can be applied to
problems in which the period l is of the same order as the plate thickness. At the same time it constitutes the
basis for the subsequent analysis.

5. AN UNIPERIODIC PLATE MADE OF ORTHOTROPIC ELEMENTS

5.1 Model equation

Now let us assume that the plate consists of an orthotropic, homogeneous and elastic materials (periodically
spaced along the x1 – axis), for which the principal axis of orthotropy coincides with the Cartesian axis (x, z). An
example of the uniperiodic plate made of two materials is shown in Fig.1. Taking into account the orthotropy of
the plate materials we denote the non-zero components of the elastic moduli tensor:

C11 = C1111 C22 = C2222
C12 = C1122 = C2211 C = C1212 = C1221 = C2121 = C2112
D1 = B11 D2 = B22 .

Let us take exclusively only one vector shape functions 1 1
1 1 1 1 2 1 2 1( ) ( ), ( ) ( )= =h x h x h x h x  as the first approximation

of the plate fluctuation caused by the uniperiodic plate structure. Under this condition, the components of
displacement field have a form

o
1

o
3

( , , ) ( , ) ( ) ( , , )

( , , ) ( , )
α α α= +

=

u z t z t zh x z t

u z t w t

ϑ ψx x x
x x

(5.1)



On the above assumptions, we obtain from (4.4) the following system of equations for the unknowns wo, o
αϑ  and

1=ψ ψ

( ) ( )
( )

( ) ( )
( )

o o o o o o
1 11 1,11 12 2,12 1,22 1 1 ,1

o o o o
11 1,1 ,1 2,1 ,2 1, 3 1,

o o o o o o
2 22 2,22 12 1,12 2,11 2 2 ,2

o o o
22 1,1 ,2 2,1 ,1 2, 3

0,αβ αβ α α

αβ αβ α

⎡ ⎤− + + + + + +⎣ ⎦
− + − + =

⎡ ⎤− + + + + + +⎣ ⎦
− + − +

&&

&&

j j C j C C j C D w

j C h j Ch j z

j j C j C C j C D w

j C h j Ch j z

ρ ϑ ϑ ϑ ϑ ϑ

ψ ψ σ ϑ σ ϑ

ρ ϑ ϑ ϑ ϑ ϑ

ψ ψ σ ϑ σ

( ) ( )
( ) ( )

( )
( ) ( ) ( )

o
2,

o o o o o o o
1 1 ,1 2 2 ,2 ,,1 ,2

2 2 2 2 2 2
1 2 11 1,1 2,1 1 1 2 2

2 2 o o
22 2 1 ,22 11 1,1 1,1 12 1,1 2,2

o o o o 2 2 o 2 2
2,1 1,2 2,1 11 1,1 2,1 22 1 2 ,22

0,

0,

h

0.

α

αβ αβ

=

− + − + − =

+ + + + + +

− + + + +

+ =

&&

&&

w D w D w w

j h h j C h j Ch D h D h

j C j Ch j C h j C h

j Ch + + j σ h +h - j σ h +h

ϑ

ρ ϑ ϑ σ

ρ ψ ψ

ψ ϑ ϑ

ϑ ϑ ψ ψ

(5.2)

Equations (5.2), together with formulae (5.1), constitute the proposed non-asymptotic 2D– model of the medium
thickness uniperiodic composite plates made of orthotropic components. At the same time they represent a
certain first approximation of governed Eqs. (4.4). This model enables analysing of many dynamic and stability
problems.

5.2 Analysis of free vibrations

As an example of application of the Eqs. (5.2), free vibrations of a rectangular, simply supported on its edges
plate with uniperiodic structure will be studied. It will be assumed that the plate is made only of single
orthotropic and homogeneous material. The repetitive segment (periodicity cell) of this plate consist of two parts
in which the principal axis of orthotropy in the mid-plane, are turned by 90o. The plate with such a structure, so
called uniperiodic with respect to the elastical properties. Under these conditions in equations (5.2) the

coefficients are 12 1,1 2,1 0= =C h Ch .

To simplify calculations let’s assume that the effect of initial stress on the free vibrations can be neglected and
the mode shape function 1 2= =h h h  where h is a periodic saw-like function, the diagram of which is shown in
Fig.2.

Fig.2. Periodicty cell and diagrams of function ( )h ⋅



Taking into account the boundary condition we look for the solution to equations (5.2) in the form

o i t
1 1mn m 1 n 2

m 1 n 1

o i t
2 2mn m 1 n 2

m 1 n 1

o i t
mn m 1 n 2

m 1 n 1

i t
n 1 n 2

n 1

,

,

,

( ) ,

∞ ∞
ω

= =
∞ ∞

ω

= =
∞ ∞

ω

= =
∞

ω

=

=

=

=

=

∑∑

∑∑

∑∑

∑

e cos x sinβ x

e sinα x cos x

w e w sin x sin x

e x sin x

ϑ ϑ α

ϑ ϑ β

α β

ψ ψ β

(5.3)

where m n
1 2

mπ nπα = , β = , m,n=1,2,...L L  and 1mn 2mn mn, , wϑ ϑ  are constant amplitudes, ω  is a vibration

frequency. For ψ  boundary conditions are known only on edges x2 = 0, x2 = L2.

Denoting

( ) ( )2 2 2 2 2 2 2
11 ,1 ,1 1 2 n 22Ch= + + + + +B j C h D h D h j C h Chβ

we obtain from (5.2)4

11 ,1
n 1 m 1mn m 12 2

m 1
( )

2
ψ α ϑ α

ρ ω

∞

=
=

− ∑j C h
x sin x

B h
  (5.4)

thus, the unknown n 1( )xψ  can be eliminated from the model equation.

Substituting (5.3) into (5.2), taking into account the aforementioned assumption and (5.4), after denotation

2

11 1
11 2 2

,
,

2ω ρ ω
= −

−
C h

H C j
B h

we obtain the following system of three linear algebraic equation for constant amplitudes

1mn 2mn mn, , wϑ ϑ  :

( )

( )

2 2
m n

m n 12 m 12
1

2 2 1mn
n 22 m

m n 12 n 2 2mn2
2

mn2 2 2
m 1 n 2 m 1 n 2

C

0
0
0

ωα β
α β α

ρ ω
ϑβ α

α β β ϑ
ρ ω

α β α β ρ ω

⎡ ⎤+ +
+⎢ ⎥

−⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥+ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥+ −
⎢ ⎥
⎢ ⎥⎣ ⎦

jH j
j C C D

D j

j C C
j C C D

D j w
D D D D

       (5.5)

and additional condition  2 22 ρ ω≠B h .

One should pay attention, that for plate described by Eqs. (5.5), coefficients C  and 12C  not depend to

configuration of components on the periodicity cell. Moreover, the averaged include function 2h , for example



2
1D h , one can present in the form 2

1 112= 2D h l D .This coefficient depends explicite on the period l
and describes the length-scale effect.

Bearing in mind, that the period l is of an order of the plate thickness d and as well is sufficiently small when
compared to 1L m  and 2L n , we can introduce in equations (5.5) the small parameter nε β= l .

The frequencies of free vibrations are calculated by assuming that the determinant of (5.5) is equal to zero.
Denoting by

( )2 2 2
0 11 1 1 1 2 11 11, , ,κ= + + + = −

2

11 1

0

C h,
B C h Ch D D H C

B

where the parameter ( )22 112κ −= ⋅ =2l j l d  represent the influence of the length scale effect. Then solve the

dispersion equation resulting from (5.5), taking into account that 1ε � , we arrive at the following approximate
formulae for free vibrations frequencies :

lower

( ) ( )
4 2 2 4

11 m m n 12 22 n2 6
1

H 2 2α α β β
ω ε

ρ
+ + +

= +
C C C

j O (5.6)

and higher

( ) ( )

( )

( )

2 2 2
11 1 1 1 22 2

2 2

12 2
3

22 2
4

, ,
2

κ
ω ε

κ ρ

ω ε
ρ

ω ε
ρ

+ + +
= +

= +

= +

C h Ch D D
O

j

D
O

j

D
O

j

(5.7)

Commenting the obtained results, notice that the vibration frequencies 3 4,ω ω  describe the effect of the plate

rotational inertia on the dynamic behaviour. Neglecting in (5.2) terms 0
αρ ϑ&&j  we obtain only two basic free

vibration frequencies. The lower frequency 1ω  can be compared with the earlier results obtained by using

homogenization procedures. Also, to the similar formula for 1ω  we arrive in the framework of the elastic

anisotropic plates [7]. The higher free vibration frequency 2ω  is caused by the plate uniperiodic structure,
depends on the period l and cannot be derived from the homogenized model.

5.3. Numerical calculations

In this subsection the analysis of interrelation between non-dimensional lower free vibration frequency  and
geometrical parameters κ = l d  and 2 1ξ = L L  will be carried out.

Let us denote by ′ ′′C ,C and ′ ′′D ,D  the elastic moduli  of components of the periodicity cell, Fig.2. If

( ), 0,1′= ∈x l l x  the averaged operator reduces to the form

( )1′ ′′f = xf + - x f
and

( )2
1, , 1 .′ ′′ ′ ′′= =2 2

1f h l 12 f f h f - f , f h, = f x+ f - x



Therefore, for the uniperiodic, orthotropic plate under consideration we obtain

( ) ( )
( ) ( )

1 1

1 1
11 11 22 22 22 11

1 1 2 2 2 1

12 12

C = xC + - x C , C = xC + - x C

D = xD + - x D , D = xD + - x D

ρ = ρ , C = C , C = C

Assuming that m=n=1 , multiplying relation (5.6) by ( ) 14 4
11 2ρ π

−
j C L  we arrive at the following formulae for

non-dimensional lower free vibration frequency

( ) ( )4 2
12 22 11

11

1 H 2 2 1Ω ξ ξ⎡ ⎤= + + + + −⎣ ⎦C C xC x C
C

  (5.8)

where

( ) ( ){ } ( ) ( )

( ) ( ) ( )

11 22 11 22 1 2 11 22

11 22 1 2

1 1
1

1 1
1

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦

2

2

1 C xC + - x C +C C +κ D + D xC + - x C
x - x

H =
- x C + xC +C +κ D + D

x - x

The calculation assumptions are fulfilled by glued timber plate that is composed of the elements cut along and
across the fibres, Fig.3. According to PN-B-03150-2000, timber is a quasi-isotropic material with elastic moduli
(with received denotation) : E11 = 13000 Mpa ,

Fig. 3. An example of glued timber plate

E22 = 430 Mpa , D1=D2=C12=C= 810 Mpa , for glued timber  GL-35.

Calculations are performed for three values parameter ξ = 0,5 ; 1,0 ; 2,0  and for four values of  κ = 0, ; 0,5 ; 1,0
; 2,0 . For 0κ = , the obtained results one can treated as certain approximation of the homogenized model..
Diagrams representing interrelation between frequency Ω  and the size of the periodicity cell(includes in x and
κ ) as well the parameter ξ , for glued timber plate, are shown in Fig.4.



Fig. 4.Interrelation between free vibrations frequency and geometrical parameters for glued timber plate

a)

b)

c)



Commenting the obtained results it should be stated that, with the adapted assumption regardless of glued timber
plate, the asymptotic model gives the lowest values of the free vibrations frequency. The influence of in-
homogeneity on the vibration frequency is considerably higher for plates in which the “periodic” length
dimension 1L  (Fig.1.) is of an order 2L  or smaller. For given ξ  , the frequency values rises with the growth of
κ . If κ  is small, there are no significant differences in the values of vibrations frequencies for proposed and
homogenized model.

6. CONCLUSIONS

Summarizing the obtained results the following conclusions can be formulated.

• The proposed 2D-model of uniperiodic, Reissner–type plates makes it possible to investigate dynamic
and stability problems, in which the constant plate thickness d is of an order of the period l.

• This model is derived by using the tolerance averaging technique, describes the effect of the period
length l on the overall plate behaviour. Contrary to the homogenized model, the model obtained in this
contribution, determines also higher free vibrations frequencies, caused by the plate uniperiodic
structure.

• The obtained 2D-model is a certain complementation and extension for the model presented in [1], [2],
[3] where the period length is assumed to be much larger when compared to the plate thickness.

• The analysis in section 5 but also in [15] confirms the thesis, that if the period length is small when
compared to the plate thickness, then the length-scale effect is reduced; in this case the homogenization
approach is used.

• The proposed model cannot be treated as a special case of nonasymptotic model of plates with bi-
directional periodic structure [15], in spite of many convergences in the modelling procedure.

• The calculations for rectangular, simply supported glued timber plate lead to the conclusion, that the
asymptotic model gives lower values of the basis free vibrations frequency. The influence of the period
length l=l1 on the frequency values rises with the growth of quotient 2 1L L .
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