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Abstract
By means of the wavelet transformation not only the signals will be transferred into the wavelet domain, but also
their statistical qualities, which are described by probability distributions, second order moment functions, and
others. Here, we consider the normal distribution and the distributions of the ordinates of periodic signals in order
to compare pre-estimates of compression rates using continuous wavelet transforms. The action of non-zero expec-
tation values of processes with stationary increments is investigated for the same purpose. Finally, the theoretical
results based on the continuous transformation are compared to those of numerical experiments with discrete data.
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1 Introduction

The wavelet transformation (WT) is a linear integral transformation of the convolution type. Therefore
it can be understood as a linear filter. Its weighting function g and its frequency response G (as to the
notation of Louis, Maas and Rieder (1994) and with the exception of normalizing factors) are

g ∼ 1√
a
ψ

(
− t

a

)
, G ∼ √

aψ̂ (−aω) , (1.1)

where ψ is the wavelet used, ψ̂ is its Fourier transform (FT) and a is the scale parameter. Because of the
properties of ψ this filter is of the band pass type: The WT of a signal f produces a band-filtered version
of f on each scale a > 0. This is the basis of the decomposition of f into its components of different
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Table 1: DTM Schneealpe, Austria. Empirical compression rates k̂e using the discrete WT (according to
G. Beyer). Discussion in Section 1, exampel 1.

Test µ̂ m̂h in m S k̂
(1)
e k̂

(2,3,4,6)
e k̂

(2,3,4,6)
e /k̂

(1)
e

1 0.27 2.2 6.6 3.9 6.0 bis 7.1 1.5 bis 1.8
2 0.52 2.8 7.9 2.4 5.8 bis 6.6 2.4 bis 2.8
3 0.67 3.1 10.0 2.2 5.8 bis 6.2 2.6 bis 2.8

”width”, or analysis of ”complex” signals. If the latter have statistical properties, these are transferred
from the original domain into the wavelet domain (WD).

An empirical statistics with wavelet coefficients (WCs) is, at least on the denser occupied lower scales,
always possible. But the one who is interested in the transformation mechanism knows that, on the one
hand, narrow limitations are put on the analytical calculation already with signals and their mean values,
even narrower limits when transforming second and higher moments, let alone the complete distribution
functions. On the other hand, such transformations are important means to solve practical problems.
Three areas of problems should be mentioned:

1. The fast WT provides thinned out series of WCs. In order to optimally interpolate them for
approximation purposes, the auto-covariance functions (ACFs) of signal and noise in the WD are
needed.

2. The mentioned (and other) characteristics can be used to analyse the properties of one input signal
on different scales or of two (several) input signals on one scale. Schmidt (2000 to 2002) produced
some theoretically based papers - from the continuous and discrete transformation of the moment
functions up to test strategies, inclusive of the two-dimensional case (Schmidt 2001b).

3. The data compression in the WD is based on thresholding. To pre-estimate the number of the
(negligible) WCs requires integration with respect to density functions of the WCs. In case of
normally distributed WCs, apart from expectation values, the scale-dependent variances are needed.

In the following the latter problem is treated from special points of view. Previous investigations of the
author (Meier 2003) were confined to signals of the simplest process class, namely the stationary gaus-
sian processes. In numerical tests of digital terrain models (DTMs) rather good agreement with empirical
compression rates has been obtained, but significant differences showed in special cases. To settle these
cases requires an advanced modelling, at least to include the processes with stationary increments.

In order to separate certain effects, first it will be investigated how resistant present estimation formulas
of compression rates are to deviations from the normal distribution and what quantitative effect non-zero
means of the WCs have (Section 2). Then the mean value influence is investigated on the example of
wavelets of finite order (Section 3). Comparisons between pre-estimated and empirical compression rates
follow (Section 4). Motivation is provided by

Example 1: DTM Schneealpe, Austria. Empirical compression rates.

Table 1 shows relevant data of three test regions of the DTM Schneealpe (Institute of Photogramme-
try and Remote Sensing, Vienna University of Technology) with different mean inclinations of the relief
characterized by an estimation value for µ := E |gradh|. The thresholds S has been chosen so that
the standard deviations of the errors due to data compression do not exceed those of the (inclination-
dependent) sampling errors m̂h.

As expected the empirical compression rates k̂e decrease with increasing µ̂ for, in general, the less (neg-
ligible) WCs fall into the interval (−S,+S) the more the mean value w̄ of the WCs is different from
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zero. This can be proofed for the individual cases (Sections 2 to 4). There is a particularly conspicuous
jump from k̂

(1)
e for wavelets of the 1st order to k̂

(2)
e for wavelets of the 2nd order, whereas no distinct

order-dependent increase of k̂e is observed for wavelets from the 2nd order (experiments were made with
Daub 4, 6, 8 of 2nd, 3rd, 4th order as well as with Symmlet 4 of 4th order and Coiflet 3 of 6th order).
Looking at the last column of Table 1, signal inhomogeneities concerning the mean values, i. e. the mean
relief inclination, should dominate. This, however, is to be proved in detail (Section 3).

2 Probability distributions

2.1 Transformation of the moments

Each distribution or density function is defined by their set of moments. The problem whether a unique
composition exists is referred to as the Stieltjes’s moment problem. For ”simple” distributions such a
solution always exists. This opens up - at least in theory - a possibility to transfer distributions of signal
values in the original domain to the scales in the WD: Calculate the moments of the input distribution,
transform them one after the other into the WD and recompose them according to the moment rule.
The transformation of the 1st moment is the simplest (cf. expectation values in Section 3). For the
2nd moment the input ACF Cff has to be convoluted twice with the wavelet; the complete correlation
properties of f enter the variances in the WD. For illustration see

Example 2: Scale-dependent variances of a periodic signal in the WD.

The ACF of
f(t) = A0 +A sinω0t (2.1)

is

Cff (τ) = σ2
f cosω0τ, σ2

f =
A2

2
. (2.2)

In the WD on each scale a > 0

σ2
w(a) = 2πaσ2

f

|ψ̂(−aω0)|2
cψ

(2.3)

holds with

cψ := 2π
∫ +∞

−∞

|ψ̂(ω)|2
|ω| dω = const, (2.4)

cf. also Meier (2003, Table 1, p. 58). The frequency ω0 that defines the correlation behaviour transfers
itself to the variances (2.3) in the WD.

Generally, for the transformation of the nth moments (n ≥ 2) so-called multi-point correlation functions
(MPCFs) are needed, which have to be convoluted n times with the wavelet. Obviously it is difficult
to realise such a programme. Although the MCPFs created within the statistical theory of turbulence
by Grafarend (1972) were structurally investigated for purposes of non-linear prediction, one has diffi-
culty already in estimating the conventional ACF (2-PCF) (Sutor, 1997). Fortunately, there are some
distributions which allow one to reach one’s goal with ease.

2.2 Normal distribution

If the values of the input signal f are normal-distributed, then also the WCs are normal-distributed due
to linearity of the WT. If, moreover, f is stationary, then the mean values w̄(a) become zero and the
WCs are distributed on each scale a > 0 as N(0, σ2

w(a)) (cf. Section 3). To include the cases with w̄ �= 0,
compression components of WC are calculated from N(w̄(a), σ2

w(a)) as follows.
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The relative number of WCs falling below a given threshold value S on each scale follows as

λN = P (−S < w < +S)

= P (g1 <
w − w̄

σw
< g2) (2.5)

= F (g2) − F (g1) =
1√
2π

∫ g2

g1

e−t
2/2dt,

with F (g1,2) as the distribution function of N(0, 1) at the positions g1 = −(S+ w̄)/σw, g2 = (S− w̄)/σw.
Special cases of (2.5) are given in Table 2. The approximation formulas are generated by Taylor expand-
ing F (g1,2) breaking off after the quadratic term. For that let us look at

Example 3: Approximation for large mean values (|w̄| � S)

F (g1) = F (− w̄

σw
− S

σw
)

≈ F (− w̄

σw
) − S

σw
F ′(− w̄

σw
) +

1
2
(
S

σw
)2F ′′(− w̄

σw
) ,

F (g2) = F (− w̄

σw
+

S

σw
) (2.6)

≈ F (− w̄

σw
) +

S

σw
F ′(− w̄

σw
) +

1
2
(
S

σw
)2F ′′(− w̄

σw
) ,

λN = F (g2) − F (g1) ≈ 2
S

σw
F ′(− w̄

σw
)

=
2√
2π

S

σw
e−w̄

2/2σ2
w <

2√
2π

S

σw
.

That quantifies the influence of w̄ �= 0 on λN . To check the resistance of such estimation formulas to
deviations from the normal distribution a test distribution is recommended that deviates from the normal
distribution to an extreme extent.

2.3 Distribution of the ordinates of a periodic signal

The density function of the ordinates of the signal (2.1) is (cf. e. g. Meier and Keller (1990), p. 43)

g(x) = π−1[A2 − (x−A0)2]−1/2, |x−A0| < A . (2.7)

It behaves totally different to that of the normal distribution (Fig. 1).

If a signal (2.1) is transformed by wavelets of nth order, the nth derivation is when passing the limit
a→ 0 approximated as

f (n)(t) = ωn0Asin[ω0t+ n(
π

2
)] (2.8)

whereby some proportionality, or normalization factors, respectively, are to be taken into consideration;
cf. e. g. Beyer and Meier (2001). That means that in the WD the type of the distribution with the
density (2.7) is approximately maintained at least on lower scales: In (2.7) the constant becomes A0 = 0
and the amplitude ωn0A =: Aw; the phase shift is of no importance. If in (2.1) instead of the constant
there is a position-dependent trend, so there are cases with w̄ �= 0 and in (2.7) A0 is to be replaced with
w̄. On lower scales, where there is the proportionately strongest compression, therefore

λ0 = P (−S < w < +S)

≈ 1
π

∫ +S

−S

dx

[A2
w − (x − w̄)2]1/2

(2.9)

=
1
π
{arcsin(

S + w̄

Aw
) + arcsin(

S − w̄

Aw
)} ,
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Fig. 1: Density functions of the normal distribution and of the distribution of the ordinates of a periodic
sinal with equal first and second order moments. Position of the threshold intervals 2S, cases x̄ = w̄ = 0,
x̄ = w̄ �= 0. Discussion of the resulting compression components λN , λ0 see Section 2.3.

with Aw =
√

2σw. Special cases are indicated in Table 2; the approximation formulas were obtained as
mentioned above. The differences to the normal distribution are seen in Fig. 1, where threshold intervals
of the width 2S were entered: If w̄ = 0 or |w̄| �= 0, but not too big, then λ0 < λN . If |w̄| continues to
increase, then λ0 > λN . If eventually |w̄| ≥ Aw+S, i. e. when the signals in the WD outside the interval
(−S,+S) oscillate, then λ0 falls to zero, while λN takes there a finite, albeit small value. Now let λ0 be
quantitatively considered in comparison to λN .

Example 4: Behaviour of the compression components.

In Fig. 2 λN , λ0 and the ratio λN/λ0 are plotted for the cases w̄ = 0 and w̄ = S. For small |w̄| and small
S, 1 < λN/λ0 <

√
π applies. For big S and/or |w̄| this ratio can change to λN/λ0 < 1. Let especially be

|w̄| = Aw � S. By a series expansion as above it is found:

λN ≈ 2/e√
2π

S

σw
, λ0 ≈

√
2
π

S

σw
,
λN
λ0

≈
√
π

e
≈ 0.65 . (2.10)

Although both distributions behave quite differently, the compression components on the scales for not
too big S, |w̄| differ by less than the factor two. From this we can conclude that the estimation formula
(2.5) and the special cases in Table 2 are resistant to (partly even rather big) deviations from the normal
distribution and can particularly be used to wavelet-transformed height data of DTM without hesitation
(Section 4). Further, in both distributions the strong influence of the mean values w̄ = w̄(a) on λ = λ(a)
can be seen. What, now, are the prerequisites for w̄ = 0 or w̄ �= 0 ?
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tributed (λN ) and periodic oszillating wavelet
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Fig. 3: Data compression with the Haar wavelet
and threshold S = σw(a1). Compression compo-
nent λ1 = λ(a1), total proportion λ (scaling left),
total compression rate k (scaling right). Discussion
in Section 4, example 7.

3 Expectation values

Let f(t) be the realization of a stochastic process F (t). When all realizations fi ⊂ F are put into the
integral of the WT and the expectation value is formed, then

E{w(a, b)} =
1√
cψ|a|

∫ +∞

−∞
E{F (t)}ψ

(
t− b

a

)
dt, (3.1)

because the formation of the expectation value and the integration, as linear operations, can be exchanged.
In general, the WT provides scale-independent expectation value functions. There are, however, dis-
tinctive special cases where (3.1) no longer depends on the position b.

Example 5: Stationary processes.

Let F be stationary with E{F (t)} =: F̄ = const. In this case F̄ can be written in front of the integral so
that (with the substitution (t− b)/a =: x)

E{w(a)} =: w̄(a) =

√
|a|
cψ
F̄

∫ +∞

−∞
ψ(x)dx ≡ 0 (3.2)

becomes because of ∫ +∞

−∞
ψ(x)dx = 0 . (3.3)

The expectation values are - irrespective of the wavelet used - equal to zero on all scales.

Example 6: Processes with stationary increments.

Processes are understood as processes with stationary increments, if their first derivation is stationary, for
example, F1(t) = αt+F (t), where a stationary process F (t) like in example 5 is additively superimposed
on a linear trend αt, α = const. Showing consideration for (3.2), only the term

E{w(a)} =
α√
cψ|a|

E

{∫ +∞

−∞
tψ

(
t− b

a

)
dt

}
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remains, and with the substitution as above

E{w(a)} = α

√
|a|
cψ
E

{
a

∫ +∞

−∞
xψ(x)dx +b

∫ +∞

−∞
ψ(x)dx

}
.

The second integral becomes zero because of (3.3), the first one corresponds to the 1st moment µ1 of the
wavelet ψ, and only does not become zero if ψ is of 1st order. For such wavelets constant values result
on each scale,

w̄(a) =
αµ1a

3/2

√
cψ

�= 0 , (3.4)

otherwise also here w̄(a) ≡ 0.

Among all signals the mean value-stationary signals can - as the estimation functions in Table 2 indicate
- be compressed most intensely. Further, with (3.2), (3.4), the jump in the empirical compression rates,
example 1, Table 1, can be explained qualitatively: The used wavelets of 2nd to 6th order with w̄(a) = 0
on all scales without exception compress distinctly more intense than 1st order wavelets with w̄(a) �= 0.
The influence of different (wavelet-dependent) σw(a), however, is rather small. A quantitative estimation
follows in Section 4, example 8.

4 Comparison of compression rates

Compression rates are defined in the literature in different ways, as a rule, for the WT as the ratio of
the incompressed to the compressed data. Let N be the number of the original signal values or the
WCs without compression, respectively, and λ the proportion of the WCs eliminated by the thresholding
method, then the compression rate due to the mentioned measures is

k =
N

N −Nλ
=

1
1 − λ

, λ =
n∑
k=1

2−kλ(ak) , (4.1)

cf. Meier (2003, p. 33). The author succeeded in creating a closed presentation of the sum of the
proportions λk over all scales ak (k = 1, 2, . . . , n) only for the Haar wavelet.

Example 7: Compression with the Haar wavelet.

Provided the ACF Cff of the input signal is of the bell-shaped curve type,

4
3
<

λ

λ1
< 2 for 1 > ρ1 > 0 , (4.2)

follows (Meier 2003, p. 37), with ρ1 as the correlation coefficient of directly neighbored signal values.
In actual DTMs, as a rule, 0.9 < ρ1 < 1 applies (Borkowski 1994). In Fig. 3 the boundary case

λ =
4
3
λ1 for ρ1 → 1 , (4.3)

and the resulting minimum rate according to (4.1) are shown. With the special threshold S = σw(a1) it
follows from (2.5):

λ1 = F

(
1 − w̄1

σw,1

)
+ F

(
1 +

w̄1

σw,1

)
− 1 . (4.4)

The quick drop of the compression rate with growing |w̄1| = |w̄(a1)| is seen.

Let’s conclude by returning to the introducing example 1 and compare the compression rates pre-
estimated for the one-dimensional case using formula (2.5) to empirically determined compression rates

8



Table 3: DTM Schneealpe, Austria. A priori and empirically estimated compression components and
compression rates. Discussion in Section 4, example 8.

Wavelet of 1st order (Haar) Wavelet of 2st order (Daub4)
Test S = m̂h | ˆ̄w1| σ̂w,1 λ̂1 k̂1 k̂ k̂e | ˆ̄w1| σ̂w,1 λ̂1 k̂1 k̂e

1 2.2 1.50 4.50 0.354 1.55 1.9 1.9 0.067 2.73 0.580 2.38 2.8
0.405 4.08 0.408 1.69 2.2 0.067 2.67 0.588 2.43

2 2.8 0.857 6.26 0.342 1.52 1.8 1.5 0.051 3.18 0.622 2.65 2.9
0.192 7.71 0.284 1.40 1.6 0.011 2.94 0.660 2.93

3 3.1 0.286 9.80 0.248 1.33 1.5 1.4 0.089 3.99 0.563 2.28 2.8
3.05 7.13 0.308 1.45 1.7 0.045 3.17 0.560 2.27

for the two-dimensional case. Such a comparison is admissible, if the compression was performed using
tensor-product wavelets, i.e. signal decomposition relative to axes and diagonals of the discrete grid
(Beyer 2002).

Example 8: DTM Schneealpe, Austria. A-priori and empirically estimated compression components and
compression rates.

Table 3 contains selected data concerning two wavelets. The threshold value, equal to the pre-estimated
height error, was set lower than in example 1 out of consideration for the data quality. The estimated
values of |w̄1|, σw,1 relative to the axes indicate that the 2D signal is neither homogeneous nor isotropic.
Also the deviations from the normal distribution (not represented) are significant. Nevertheless, the k̂
pre-estimated for the Haar wavelet from the (robust) formulas (2.5), (4.2), (4.3) correspond very well
with the empirical values k̂e. For Daub4 no direct comparison is possible. It is seen, however, that - above
all, because of the very small mean values compared to the Haar wavelet - the compression components
λ̂1 and k̂1 turn out distinctly bigger and the compression of DTMs with lower threshold values should be
useful only with 2nd or higher order wavelets.

5 Conclusions

It is known that the possibilities to calculate using the continuous WT are limited, which has not been
detrimental to the wide use of the discrete WT. This also applies to the statistical characteristics of
the input signals: Model formations are only possible with a few (standard) wavelets and sufficiently
simple process classes from which the signals originate. The author has been anxious to exploit these
possibilities aiming at supporting the so far rather empirical investigations on data compression from a
statistical point of view.

As a rule, the distribution of the signal values and the WCs is not known. A-priori estimations of the
compression rates on the assumption of normal-distributed WCs are admissible and realistic, because
they are resistant to (even large) deviations from the normal distribution. Among all signals those the
WCs of which are, in the mean, equal to zero on all scales can be compressed most intensely. These
include the mean value-stationary signals, then those having a mean value with a linear trend, if they
are compressed using 2nd or higher order wavelets. Variances have, compared to non-zero mean values in
the WD, a smaller influence. Apart from the threshold values the compression rates depend - expressed
in a simplified manner and as confirmed by empirical investigations - more on special signal properties
than on the wavelets used.
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