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ABSTRACT

The paper considers arbitrary large deflections of strings and connected with it coupling of vertical and
horizontal displacements. Strings are made of a linearly elastic material. The physical model of a tie rod,
equations and algorithm of their solutions as well as examples of string analysis are presented. Obtained results
are compared to analytical solutions already known but for small displacements. Presented examples are
calculated using an Author’s program.
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1. INTRODUCTION

Tie rod structures are widespread in different domains of technique. Increasing requirements given to
contemporary engineering structures concerning their spans as well as economical considerations favour that
cable-suspended structures which makes them more and more widespread. One of the reasons limiting their
practical applications are some difficulties connected with calculation of such structures, which results from
great non-linearity of equations which describe the tie rod systems. In this context, one of the main problems is
to search for proper methods for solution of equations describing statics or dynamics of these systems.

http://www.ejpau.media.pl/


Designing of tie rod structures is a subject of many scientific papers [1÷6]. The problem was repeatedly
contemplated and continue to be the object of interesting works, which frequently link theoretical and
experimental researches [7÷10]. The complexity of this problem is so high that univocal presentation in form of
universal models, formulas and equations may not be possible. Hence the wealth of literature related to this
problem.

The geometrical non-linearity causes that the analytical solution can be obtained only for elementary cases. The
effective solutions are searched for by application of numerical methods using computers, e.g. [11÷15]. One of
elementary examples of tie rod structures are strings.  String is a single tie rod, preliminarily tightened, of a
slight dead weight. Negligible dead load and preliminary tension cause that unloaded string lays along a straight
line. The classical solution of the string is found by assumption of small deflections charged e.g. [13].

The subject of the paper is dynamics of a string made of an elastic material. The aim of the investigation is
simulation of arbitrary large vibrations of the string.

EQUATIONS OF MOTION

Differential equations of motion of tie rod systems were accurately discussed by the Author in [14]. The limp
string made of an elastic material is considered. Each tension member of tie rod systems is fashioned in a shape
of a chain composed of a finite number of straight bars connected in nodes by means of ideal pivot bearings
(Fig. 1). This process may be called discretization of the tie rod, which leads up to division of the tie rod into
finite elements FE (see [15]). The string is able to endure any possible displacement, however it is assumed, that
its strains are infinitesimal. The loads acting upon a string can vary in space and time. The change of temperature
may also cause a load of the string. The string may be preliminarily tensioned. We are in search for functions
which describe mainly the axial forces ( )tzyxN ,,,  and displacements ( )tzyxu ,,, .

The following assumptions are made:

1) the material of the string is linearly elastic,
2) the string is able to transfer tensile forces only,
3) the string can assume arbitrary large displacements,
4) loads of the system form concentrated forces ( )tzyxP ,,,  acting in an arbitrary direction, temperature

( )tzyxT ,,,  and preliminary tension of the tie rod arrangement,
5) variability of boundary conditions in time  and local changes connected e.g. with a change of the
string length are admissible,
6) the preliminary configuration is known.

Fig. 1 Fashioned tie rod in a form of n  straight bars



Equations of motion for an arbitrary node “i “ of a single tie rod (string here) have the following form [14]:
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where: ikE  is the coefficient of elasticity (Young’s modulus), ikA  - cross section area, 0
ikl  - length of FE in the

initial configuration, t
ikl  - length at a moment t, ikα -coefficient of linear thermal expansion, ikT - increase of

temperature, ∆
ikε - preliminary deformation (initial), t

i
t
i

t
i zyx ,,  - co-ordinates of a node,

i
t
zi

t
yi

t
x PPP ,,  - components of nodal forces.

Equations (1), which describe motion of the tie rod system nodes for all joints, ought to be composed, except from
the supporting nodes. The boundary and initial conditions are the completion of this set of equations.

SOLUTION TO EQUATIONS OF MOTION FOR TIE ROD SYSTEMS –
– NUMERICAL (COMPUTER) METHOD

Equations (1) are characterised by strong geometrical non-linearity. An iteration method for solving such
systems has been elaborated.

The first stage of calculations is the determination of the initial configuration of the tie rod system. One assumed
that it is a state of displacements of the system from the initial load acting statically (e.g. dead load, temperature
of assembly, preliminary tension of the structure and others). In such a case, equations of motion (1) are
changing into static equilibrium conditions of forces.
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At the n-th iteration for the consecutive node „i”, equations (2) reduce to the linear form through admission parts
of co-ordinates of this node from the iteration n-1 (in the case of the first iteration, one accepts co-ordinates of
the initial configuration):
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Based on the thus linearized equations, amendments of co-ordinates of the i-th node are designated. Changed co-
ordinates in calculations of corrections of consecutive nodes are used. This process is repeated until equilibrium
in all nodes of the system with the assumed accuracy would be secured. The thus accepted algorithm of
calculations requires, apart from typical data such as length and rigidity of all bars of the system, loads and
boundary conditions, also that the starting configuration, i.e. preliminary co-ordinates of all variable nodes are
known. How this configuration differs from the determined one, the so called initial configuration, has influence
upon the number of iterations and time of calculations. Starting even from very “curious” initial configuration,
the iteration process occurs convergent and allows one to find quick and highly accurate solution.

The next stage are calculations caused by dynamical loads. A system of non-linear differential equations has to
be solved (1). These are coupled ordinary differential equations. For solution of sets of equations, a numerical
method of direct integration equations of motion, i.e Newmark’s method was applied. This is a well developed
method for solving linear systems of equations. In the case of non-linear equations, an adaptation of this method
is indispensable. The methods using the so called Newmark’s incremental method for solving differential non-
linear sets of equations one can find in literature, e.g. [13]. In the case of equations (1), a special adaptation
considering specificity of this arrangement is indispensable. Expressions iiiiii wmvmum &&&&&& ,,  are substituted by
equivalent expressions iiiiii zmymxm &&&&&& ,, . Equations (1) are set for all nodes, excluding bearing joints. These are
non-linear ordinary differential equations of the second order. The unknown in these equations are values of co-
ordinates ,,, t

i
t
i

t
i zyx  ni ,,2,1 K= – nodes of tie rod systems, Tt ,,2,1 K= - nodes at the discretized time axis.

At the moment  0=t , the initial boundary conditions referred to strains and forces are known. In equations (1),
accelerations of displacements appear. These quantities are described by approximation used in Newmark’s
method.
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where h is the step of integration, δα ,  are parameters of the method.

Next formulae (4) one substitutes to (1) which yields the following recurrent formulae:
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For properly selected parameters δα, , the recurrent process is unconditionally stable. Complexity of these
formulae results from non-linearity which arises from the presence of unknown co-ordinates t

if  from the left

and right sides of the formulae. The function 1−t
iG  is a known function, determined at the moment 1−t , but the

function t
iH  depends upon known forces which cause vibration of tie rod systems. In the case of a geometrically

linear problem, the function t
iF  equals to zero. A somewhat more accurate algorithm was presented in [14]. The

method presented above has been used in Author’s computer program. This program allows one to intercept
strains of nodes and forces in bars of tie rod systems as a function of time t.

EXAMPLES OF CALCULATIONS
Example 1.

A preliminarily tensioned elastic string (Fig. 2) loaded in the mid-span by time variable force ( ) ( )[ ]tHPtP −= 10

is considered, where 0P = 20 N, ( )tH  is Heaviside’s function:
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String’s data:
a) span (length) – l = 60 cm,
b) cross-section area (φ = 0.1 mm) – A = 3.1416 ⋅ 10-8m2,
c) Young’s modulus E = 205 GPa,
d) string mass µ = 2.46615 ⋅ 10-4 kg/m (total mass 1.47969 ⋅ 10-4 kg),
e) preliminary string tension - 1.13652 kN.

Fig. 2. Scheme of the string

Fig. 3. Discretization of the string: a) in 2 finite elements, b) in 4 finite elements,
c) in 8 finite elements, d) in 16 finite elements

For calculations, a discretizated model of the string is applied (Fig. 3). Division into 2, 4, 8, 16, 60 i 120 bar
sections (finite elements) is considered. The distributed mass of the string is concentrated in nodes. The step of
integration h = 2 ⋅ 10-5 s is assumed. Time of string observations amounted to 2,5 seconds  (125 000 moments).



A case of string transverse vibrations with small deflections was examined in paper [13]. The exact analytical
solution of such a case expresses a function of vertical displacements of the following form:
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S – preliminary string tension,
ρ  – density of the string material,
A – area of the string cross-section,
l – span of the string.

To secure that Author’s calculations correspond to assumptions of analytical calculations, the value of the force
0P  is selected in such a way that the maximum deflection does not exceed 200

l of its length. On the basis of this
premise a force  of 0P  = 20 N has been assumed in calculations.

The comparison of concordance of vibration periods as a function of numbers of finite elements refered to
analytical solutions is presented in Tab. 1

Table 1. Vibration periods of the string [s]

Period of vibrationsNumber of finite
elements Analitical

solutions [13]
Computer
solutions

Coincidence of
calculations [%]

2 0.019633 9.96
4 0.019051 7.21
8 0.017420 1.48

16 0.017855 0.99
60 0.017826 0.83

120

0.017677721

0.017671 0.04

Table 2 contains a comparison of amplitudes of the middle string point (amplitude diagrams of 1 and 5 peaks
( )tw  ) that refers to the analytical solution as well.

Table. 2. Vertical displacements of the string (middle point)  [m]

Current configuration
Initial configuration

Amplitude of peak 1 Amplitude of peak 5Number
of finite

elements Analytical
solution

[120]

Computer
solution

Coincidence
of

calculations
[%]

Analytical
solution

[120]

Computer
solution

Coincidence
[%]

Analytical
solutions

[120]

Computer
solution

Coincidence
[%]

2 0.00264 0.79 -0.00264 3.37 -0.00264 4.21
4 0.00264 0.79 -0.00232 9.65 -0.00193 30.88
8 0.00264 0.79 -0.00244 4.35 -0.00212 19.31

16 0.00264 0.79 -0.00244 4.39 -0.00234 7.94
60 0.00264 0.79 -0.00256 0.58 -0.00250 1.00

120

0.00262

0.00264 0.79

-0.00255

-0.00259 1.46

-0.00253

-0.00253 0.16

Vertical displacements of the string middle point are presented in Figs. 4 ÷ 6. Vertical displacements of the point
situated in 4

1  of the string span are presented in Figs. 7 ÷ 9.



Based on the calculations made the following conclusions may be formulated:

1. The number of elements of the discretized system affects accuracy of calculations. For 16 finite elements, an
error of the period is about 1 %, and the amplitude error is 4 ÷ 8 %. For 60 elements, the amplitude error
falls down below 1.5 %. In numerical calculations the amplitudes error increases and the period error
stabilises.

2. In the compatibility analysis, the numerical results are referred to analytical solutions, however one has to
remark that the analytical solution was obtained for two important simplifications assumed:
- only transverse vibrations of the string appear,
- longitudinal vibrations of the string are neglected.
Such simplifications can only be assumed for small deflections of the string. In Author’s numerical
solution, a preliminary coupling of transverse and longitudinal vibrations appears. It means that, in this
scope, the mathematical model applied by the Author is more accurate than the model applied in the
analytical solution [13].

3. As a result of observations of vibration diagrams of the point situated in 4
1  of the string span, characteristic

flattening of the amplitude is noticed. Simultaneously, in more accurate numerical solutions (with
discretization into 60 and 120 elements) gradual decay of the “flattening” is observed. The question is if the
decay of “flattening” in the obtained solution may be a consequence of discretizations, accretion of errors in
numerical recurential Newmark’s processes, or it is a natural phenomenon whose deficiency in the
analytical solution results from some idealisation of the mathematical model (see conclusions p. 2). In two
consecutive examples, a trial of further testing of this phenomenon is to be presented.

Fig. 4. Comparison of middle point vibrations of the string divided into 60,  120 finite elements and the
accurate solution [13] at time 0÷0.25 s



Fig. 5. Comparison of middle point vibrations of the string divided into 60, 120 finite elements and the accurate
solution [13] at time 1÷1.25 s

Fig. 6. Comparison of middle point vibrations of the string divided into 60, 120 finite elements and the
accurate solution [13] at a time 2.25÷2.5 s



Fig. 7. Comparison of vibrations in the point situated in ¼ of the span of the string divided into 60, 120 finite elements
and the accurate solution [13] at time 0÷0.25 s

Fig. 8. Comparison of vibrations in the point situated in ¼ of the span of the string divided into 60, 120 finite elements
and the accurate solution [13] at time 0÷1.25 s



Fig. 9. Comparison of vibrations in the point situated in ¼ of the span of the string divided into 60, 120 finite elements
and the accurate solution [13] at time 2.25÷2.5 s

Example 2

A preliminarily tensioned elastic string loaded at 4
1  of the span by a time variable force ( ) ( )[ ]tHPtP −= 10   is

considered, where 0P = 5 N.
The string data (identical with example 1):

a) span (length) – l = 60 cm,
b) cross-section area (φ = 0.1 mm) – A = 3.1416 ⋅ 10-8 m2,
c) Young’s modulus E = 205 GPa,
d) String mass µ = 2.46615 ⋅ 10-4 kg/m (total mass 1.47969 ⋅ 10-4 kg),
e) Preliminary string tension - 1.13652 kN.

For calculations, a discretized model of the string is applied (Fig. 3). Division into 4, 8, 16, 60 and 120 rod
elements (finite elements) is considered. The distributed mass of the string is concentrated in points of nodes. The
step of integration h = 2 ⋅ 10-5 s is assumed. The time of strings observations is 2,5 seconds  (125 000 moments).

The aim of calculations is the examination of “flattening effects” for very small amplitudes. The load 0P  is
selected in such a way that the maximum string deflection does not exceed 1000

l . On the basis of this premise,

0P  = 5 N is assumed in the calculations.

The comparison of accuracy of calculation of vibration periods with respect to assumed number of finite
elements is presented in Tab. 3.

Table 3. Periods of string vibrations [s]

Period of vibrationsNumber of finite
elements Analytical

solution [13]
Computer
solution

Coincidence [%]

4 0.01936727 8.73
8 0.01782161 0.82

16 0.01752763 0.85
60 0.01765412 0.12

120

0.01767587

0.01769333 0.10

A comparison of displacements at the middle point of the string is given in Tab. 4 (amplitudes of 1 and 5 peaks
( )tw ).



Vertical displacements of the string intermediate points are presented Figs. 10 ÷ 12. Vertical displacements
of the point located in 4

1  of the string span are shown in Figs. 13 ÷ 15.

Table 4. Amplitudes of verical displacements of the string (middle point) [m]

Current configuration
Initial configurations

Amplitude of peak 1 Amplitude of peak 5Number
of finite

elements Analytical
splution

[13]

Computer
solution

Coincidence
[%]

Analytical
solution

[13]

Computer
solution

Coincidence
[%]

Analytical
solution

[13]

Computer
solution

Coincidence
[%]

4 0.000495 1.07 -0.000251 33.95 0.000392 21.01
8 0.000495 1.07 -0.000223 25.65 0.000405 17.13

16 0.000495 1.07 -0.000186 10.86 0.000433 9.55
60 0.000495 1.07 -0.000169 1.90 0.000464 2.23

120

0.000490

0.000495 1.07

-0.000166

-0.000166 0.12

0.000474

0.000474 0.08

Based on the calculations made one formulates the following conclusions:

1. The number of elements of the discretized system effects the accuracy of calculations. Yet with 8 finite
elements, the period error becomes less than 1 %. The amplitude error for 16 finite elements amounts to
10 ÷ 11 %, and for 60 elements about 2 %. In numerical calculations, the amplitude error increases and the
period error stabilises.

2. In coincidence analyses, the numerical results are assigned to the analytical solution. It was obtained by
some assumptions presented in example 1.  One can state that in result of load reduction ( 0P ), which
consequently resulted in reduction of amplitude, considerably smaller divergence between vibration periods
calculated according to [13] and numerically was obtained. Slight worsening of the amplitude results can be
explained by a load applied otherwise.

3. For a force acting in ¼ of the string span, characteristic flattening of amplitude peaks in vibration diagrams
of individual points of  the string are much more clearer (especially near the central point) than those
observed in example 2. Simultaneously, a phenomenon of decay of the flattening observed in numerical
solutions of example 2 is considerably slower. It is connected with better realisation of assumptions for
analytical solutions (small amplitudes of vibrations). It is to be emphasised at the same time that the density
of partition of the string into finite elements depends on degree of the flattening decay. The denser is the
division of the structure, the larger are deflections beyond the flat segment of vibration diagram (compare
diagrams of vibrations for division into 60 and 120-elements).

Fig. 10. Comparison of vibrations of the middle point of the string divided into 60, 120 finite elements and the
accurate solution [13] at time 0÷0.25 s



Fig. 11.Comparison of vibrations of the middle point of the string divided into 60, 120 finite elements and the accurate
solution [13] at time 1÷1.25 s

Fig. 12.Comparison of vibrations of the middle point of the string divided into 60, 120 [13] 120 finite elements and the
accurate solution at time 2.25÷2.5 s



Fig. 13. Comparison of vibrations of the point situated in ¼ of the span of the string divided into 60, 120 finite
elements and the accurate solution [13] at time 0÷0.25s

Fig. 14. Comparison of vibrations of the point situated in ¼ of the span of the string divided into 60, 120 finite
elements and the accurate solution [13] at time 1.0÷1.25 s



Fig. 15.Comparison of vibrations of the point situated in ¼ of the span of the string divided into 60, 120 finite elements
and the accurate solution [13] at time 2.25÷2.5 s

Example 3

A preliminarily tensioned elastic string loaded in the mid-span by a time variable force ( ) ( )[ ]tHPtP −= 10  is

considered, where 0P = 200 N.

The string data (identical as in Example 1):

a) span (length) – l = 60 cm,

b) cross-section area (Φ = 0.1 mm) – A = 3.1416 ⋅ 10-8 m2,

c) Young’s modulus E = 205 GPa,

d) string mass µ = 2.46615 ⋅ 10-4 kg/m (total mass 1.47969 ⋅ 10-4 kg),

e) preliminary string tension  - 1.13652 kN.

For calculations, a discretizated model of the string is applied (Fig. 3). Division into 2, 4, 8, 16, 60 and 120 bar
sections (finite elements) is considered. The distributed mass of the string is concentrated in nodes. The step of
integration h = 2 ⋅ 10-5 s is assumed.  Time of spring observations amounted to 2.5 seconds  (125 000 moments).
The aim of calculations is observation of “flattening effects” for large amplitudes (when assumption of small
displacements is not fulfilled) and comparison of vibration diagrams with analogous diagrams from example 2.
On the basis of such a premise in a force of 0P  = 200 N has been assumed in calculations.

Figure 16 presents a comparison of analogous vibration diagrams of several parts of the string from example 2
(for the force 0P  = 20 N, displacements in example 2 are enlarged tenfold) with current diagrams and the
analytical solution [13].

Based on the carried out calculations, one formulates the following conclusions:

1. Numerical solutions obtained for discretizations into 2, 4, 8 i 16-elements do not accurately reflect analysed
vibrations of strings, hence it is not possible to formulate detailed conclusions.

2. Diagrams of vibrations of the point situated in ¼ of the string span, obtained on the basis of numerical
calculations for discretization into 60 and 120 elements, allow one to observe a relationship between the
magnitude of amplitudes and velocity of oblates. The greater the amplitude, the faster the discussed process.



3. One can not univocally answer the question whether the expiring of oblates is a natural phenomenon, whose
lock in the analytical solution ought to be explained by an over-idealised mathematical model of accepted
assumptions, or it is the result of numerical mistakes. The results of numerical calculations in examples 1, 2
and 3, however, induce the Author to a statement that it is a natural phenomenon in reality.

Fig. 16. Diagrams of vibrations of the point situated in ¼ of the span of the string partitioned in 120 finite elements, a)
at time 0÷0.5 s, b) at time 2÷2.5 s
a)

b)

SUMMARY

It is known that the so-far elaborated analytical solutions refer to strings undergoing small displacements only. In
the present paper, numerical solutions pay respect to strings exhibiting arbitrary large displacements. For small
displacements, a simplified physical model is assumed, hence also a mathematical model is reduced to the
assumption that transverse vibrations of strings are independent of longitudinal vibrations. The paper - on the
contrary- considers a more precise model of computations indicating the coupling between the transverse and
longitudinal vibrations. In the case proposed in the paper, the numerical model is more precise than the model
applied in analytical solutions. For small displacements of a string, the analytical and numerical solutions are
approximate, especially with a dense discretization of the numerical model. For large displacements the
numerical solutions are considerably different from the analytical ones.
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