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ABSTRACT

The paper presents a global formulation of the initial – boundary problem of coupled thermoelasticity. The principle of
virtual work was used. The equation for virtual work in thermoelasticity has been formulated for various types of thermal
boundary conditions as well as internal sources of heat. The problem of coupled thermoelasticity in a plane stress state,
especially in a rigid disk, is considered in a further part of the paper. In the formulation of the virtual work principle, some
changes of the boundary thermal conditions have been considered on a plane bordering the rigid disk, on the assumption that
the temperature distribution is symmetrical with respect to the central surface of the rigid disk. 

Key words: coupled thermoelasticity, virtual work, rigid disk. 

INTRODUCTION

The subject of this paper represents some generalisation of equations for the virtual work principle, coupled with
the problem of outset – edge thermoelasticity. The bilateral coupling between the field of strain coincides with
the field of temperature. Strains, displacements and stresses are not only a result of the interaction of temperature
changes, but also deformation of the body related to these changes. The field of temperature takes place also as a
result of changes in the phase or internal friction that exist in the material. In such a case, the coupling between
equations of motion and equation of thermal conduction occurs, where a term connected with the deformation of
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the body appears. The evaluation of the temperature distribution is not possible without simultaneous analysis of
the state of deformation. As a rule, the influence of elastic deformation on the field of temperature is, from the
quantitative point of view, slight and practically negligible. The coupling of these fields can be very important
for great and rapid changes of temperature and very intensive processes of heat conduction. In such a case, the
parameters of material, both elastic and thermal, ought to be described as temperature-dependent functions,
which consequently leads to formulation of nonlinear, physical equations with variable material functions. In
such a case, the coupling effect of the field of deformation with the field of temperature cannot be neglected. The
presented in the paper generalisation of virtual work equations of thermoelasticity is based upon simultaneous
consideration of different kinds of thermal boundary conditions. The formulation of virtual work equations of
thermoelasticity in rigid disks is presented in a further part of the paper. The generalisation of these equations
rest upon a consideration – apart from all kinds of thermal boundary conditions at the edge of a rigid disk – also
possibilities to change these conditions at the planes limiting the rigid disk. 

LOCAL FORMULATION OF EQUATIONS OF THERMOELASTICITY

The body in a region B  shown in Fig. 1, which is a subset of an Euclidean three – dimensional space R3, is
examined. B  indicates the inside of this region, B∂  its boundary surface, on one part of which the loading -

pB∂  and on another part the displacements - uB∂  are known. 

Fig. 1. Examined solid body

 The presented analysis refer to an isotropic, homogeneous medium, geometrically and physically linear. The
change of temperature of the considered body is so small, that it does not cause any essential changes in the
material coefficients of thermo-elasticity. The initial – boundary problem of thermoelasticity in a local approach
is characterized by the following set of differential equations: 

 1. Equations of equilibrium 

iijji uf &&ρρσ =+,                                                          (2.1)

where: 3,2,1, =ji , ),,( tTXijij σσ = , )∞××∈ ,0,,, 10 TTtT BX  – components of the stress tensor, and

j

ji
jji X∂

∂
=

σ
σ , ,  ρ  - density, if  – intensity of body forces per mass unit, 2

2

t
u

u i
i ∂

∂
=&&  – component of the

acceleration vector, 0T  - initial temperature. 

 2. Equations of geometry 

( )ijjiij uu ,,2
1

+=ε                                                        (2.2)

where: ijε  – components of the strain tensor, iu  – component of the displacement vector. 
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 3. Physical equations (Duhamel-Neuman relations) [1,2,3]: 

( ) ijijij e δγλµεσ Θ−+= 2                                             (2.3)

where: λµ,  - Lame’s material constants,  e  – dilatation, relative change of volume, 0TT −=Θ – change of
temperature,  γ  - coefficient proportional to specific heat at constant deformation, [J/Km3]. 

 4. Equation of heat conductivity [1,2,3]: 
     

0, 00 =+−Θ−Θ WeTcii && γλ ε                                             (2.4)

where: 0λ  – coefficient of thermal conductivity, [W/Km3], εc   - specific heat at constant deformation, [J/Km3],

W  – output of the internal source of heat, [W/m3]. 

 5. Boundary conditions 
• Statical boundary conditions

0=− jiji np σ                                                       (2.5)

where: ),,( tTXpp ii = ,  )∞××∂∈ ,0,B,, 10p TTtTX  – components of the load’s vector, jn  – directional

cosine of the angle between the vector normal to the boundary area ν  and jX  axis. 

• Geometrical boundary conditions 

ii uu ˆ=                                                              (2.6)

                   ),,(ˆˆ tTXuu ii = ,  )∞××∂∈ ,0,B,, 10u TTtTX .

• Thermal boundary conditions 

a. The first kind of boundary conditions determines at any moment t the temperature
distribution over the surface of the body, defined by the formula: 

 
0=Θ− ii ng                                                          (2.8)

where: ii ng Θ= ˆ , 0
ˆˆ TT −=Θ ,  T̂  –temperature of the fluid surrounding the body, 1B∂  - part of the boundary

area with the thermal boundary of the first kind, )∞×∂∈ ,0B, 1tX . 

b. The second type of boundary conditions determines at any moment t the distribution of
the stream of heat density at a surface of the body, defined by the formula: 

0,0 =+Θ ii k
α
λ

                                                                (2.9)

where: ii qk ˆ1
α

=  is a particular function, iq̂  – component of the density vector of the heat flux upon a surface

of the body, [W/m2], α  - surface film conductance, [W/m2], 2B∂  - part of the boundary surface, where thermal

conditions of the second kind are given, )∞×∂∈ ,0B, 2tX . 

c. The third type of boundary conditions determines at any time t the ambient medium
temperature as well as a relationship, which describes the conversion of heat between
the body and medium. 
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0,0 =Θ−Θ− iii nm
α
λ

                                         (2.10)

where: ii nm Θ= ˆ  is a particular function, 3B∂  - a part of the boundary area, where thermal conditions of the

third kind are given, )∞×∂∈ ,0B, 3tX . 

6. Initial conditions 

- for the displacement 

oii uu =

oii uu && =                                                   (2.11)

- for the temperature 

0TT =                                                      (2.12)

The presented above differential equations constitute a set of equations of thermoelasticity. These equations are
directly coupled and can not be solved separately. In the case of the problem of decoupling, in the equation of
heat conductivity the term connected with deformation of the body vanishes. Then, for the known boundary and
initial condition, the classical (simplified) equation of thermal conductivity is solved, which yields the function
of temperature changes Θ . For the known temperature, the remaining differential equations of thermoelasticity
can be solved. 

PRINCIPLE OF VIRTUAL WORK IN THERMOELASTICITY

The starting point for derivation of the virtual work equations is the equation of motion as well as static
boundary conditions. If both these equations are multiplied by the virtual displacement iuδ  and then properly
integrated by volume and boundary surface, one can obtain the following formulae: 

∫∫∫∫ =−∂+
∂ BBBB

BB)B(B dduudupduf ijijiiiiii

p

δεσδρδδρ &&                     (3.1)

The above equation represents a generalisation of the principle of Lagrange’s virtual work for thermoelasticity
problems. The stress tensor, which appears in the above equation, is a function of temperature. Using Duhamel-
Neumann’s relations, one may obtain: 

 

=−∂+ ∫∫∫
∂ BBB

B)B(B duudupduf iiiiii

p

δρδδρ &&

∫∫∫ Θ−+=
BBB

BBB2 edded ijijijij δγδεδδεµε                                 (3.2)

In the case of coupled thermoelasticity, it is indispensable to introduce an additional relationship, which takes the
phenomena of thermoconductivity into consideration. In further analysis, Biot’s vector H , connected with the
heat flux density, is introduced by the following relations [1,2,3]: 

      ii HTq &
0=                                                (3.3)

Substituting Fourier’s equations to the above expression 

iiq ,0Θ−= λ                                (3.4)

then multiplying by the virtual increase of Biot’s vector and integrating by volume, one may obtain a
relationship as follows: 
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0B,
B 0

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Θ∫ dHH

T
iii δ

λ
&                                            (3.5)

After appropriate transformations of the above relationship, by making use of extended equations of heat
conductivity and considering thermal boundary conditions, which have also been multiplied by the virtual
increase of Biot’s vector and integrated along a proper part of the boundary area, and using the equation of
virtual work for thermal conductivity or the second variation equation connected with the process of heat
transfer, the following shape was obtained:

∫∫∫∫ ++Θ−Θ+ΘΘ
B0

0

B0BB0
BB1BB dHH

T
d

T
ded

T
c

iiδλ
δωδγδε &

+∂+∂⎟
⎠

⎞
⎜
⎝

⎛ Θ+Θ+∂+ ∫∫∫
∂∂∂ 221 BB

0

B

B)(B)(,B)( dHkdHndHg iiiiiii δδ
α
λ

δ                 (3.6)

0B)(B)(,
33 BB

0 =∂+∂Θ− ∫∫
∂∂

dHmdH iiii δδ
α
λ

where 0
0

ωω += ∫
t

dtW  denotes the global quantity of heat emitted per unit of volume from the time instant  t=0

to time t, and 0ω  – determines the initial quantity of heat. 

Equations (3.2) and (3.6) are mutually coupled. The expression responsible for coupling is an integral

∫Θ
B

Bdeδγ , which decouples the field of deformation and temperature if nullified in the equation of virtual

work of thermoelasticity. Equations of virtual work were also presented in papers [1-3], however internal sources
of heat and thermal boundary conditions were neglected there. Equations of virtual work of thermoelasticity
presented in [4] were derived by using the variance of temperature increase Θδ . In this equation, the boundary
conditions of thermal type have not been considered, either. 

PROBLEM OF THERMOELASTICITY IN RIGID DISKS

A rigid disk is in a plane stress state in a flat area 21 , XX  (Fig. 2). Thus, the principal stresses are: 11σ , 22σ
and 2112 σσ = . The remaining stresses 33σ , 3113 σσ = , 3223 σσ = , are considered as negligible. Using the

condition 033 =σ , the unit strain 33ε  can be described as follows:

( )
λµ

γ
εε

λµ
λε

+
Θ

++
+

−=
22 221133 . (4.1)

Fig. 2. Considered rigid disk

Fig. 2. Considered rigid disk. 
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After substitution of the above to the constitutive equation, the following relationship for the plane stress has
been obtained: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
Θ−

+
+= ijijij e δγλ

λµ
εµσ *2

12                                        (4.2)

                                        

where: conste =+= 2211* εε .

Using dependence (4.1), one may present the extended equation of thermal conductivity for the a plane stress
state as follows: 

0
*1

21
1
11,

λ
η

ν
νηα

ν
ν

χ
Wetii −=

−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−Θ &&                             (4.3)                                        

where: 
ε

λ
χ

c
0= ,  

0

0

λ
γ

η
T

= .

The extended equation of thermal conductivity was also presented in paper [1], but the term ηα
ν
ν

t−
+

1
1

 was

neglected there. Equation (4.3) is valid under condition that the influence of temperature takes place on the
surface of the rigid disk, otherwise there is no exchange of heat in the direction perpendicular to the rigid disk
when the disk is thermally insulated by lagging on the areas 2/3 hX ±= . On the assumption of allowable
variation of thermal boundary conditions on the planes limiting the rigid disk ( 2/3 hX ±= ), two cases are
possible: 

1) symmetrical, with respect to the middle surface of the rigid disk, distribution of temperature, 
2) arbitrary distribution of temperature. 

In the first case, the plane state of stress will be preserved, but admission of any arbitrary distribution of
temperature towards the middle surface of the rigid disk brings an additional bending state (rigid disk – slab). In
the following considerations, it is assumed that the temperature distribution ( )321 ,, XXXΘ  is symmetrical with
respect to the middle surface of the rigid disk [5,6]. After integration of thermal conductivity equation (2.4)
along the thickness of the rigid disk, and multiplication by h/1 , one obtains: 

( ) +Θ
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
Θ∂

+Θ∂+∂ ∫∫
−−−
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2/
3

2/

2/3

0
2/

2/
3210

11 h

h

h

h

h

h

dX
ht

c
Xh

dX
h ε

λ
λ

011 2/

2/
3

2/

2/
30 =+

∂
∂
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−−

h

h

h

h

dXW
h

dXe
ht

Tγ                                             (4.4)

Introducing the mean value of temperature, dilatation and internal sources of heat along the thickness of the rigid
disk: 

( ) ( )∫
−

Θ=Θ
2/

2/
332121 ,,,1,,

h

h

dXtXXX
h

tXX ,

( ) ( )∫
−

=
2/

2/
332121 ,,,1,,

h

h

dXtXXXe
h

tXXe , (4.5)

( ) ( )∫
−

=
2/

2/
332121 ,,,1,,

h

h

dXtXXXW
h

tXXW
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and taking into account the conditions of unbounded heat exchange in the plane 2/3 hX ±=  

Θ=
∂
Θ∂

=

~

0
2

3
3

λ
α

hXX
,      Θ−=

∂
Θ∂

−=

~

0
2

3
3

λ
α

hXX
, (4.6)

where TT −=Θ ˆ~
 is a difference of temperatures between the surrounding medium and the surface of the rigid

disk, leads to: 

01~,
0

0 =+−Θ−Θ+Θ
λ

η
χ

ε Weii
&& , (4.7)

where 
0

0
2
λ
αε

h
= ,   332211 εεε &&&& ++=e .

Using relation (4.1) and denoting the average values of temperature, dilatation and internal heat sources in the
following way:

( ) ( )tXXtXX ,,,, 2121 Θ=Θ ,
( ) ( )tXXetXXe ,,,, 2121 = , (4.8)

( ) ( )tXXWtXXW ,,,, 2121 =

it was finally obtained: 

0
1

21
1
11~,

0
*0 =+

−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−Θ+Θ
λ

η
ν
νηα

ν
ν

χ
ε Wetii && , (4.9)

where 2211* εε &&& +=e .

The above relationship represents an approximate form of the heat conductivity equations. In the case when the
planes limiting the rigid disk 2/3 hX ±=  are insulated, the parameter 00 =ε . 

PRINCIPLE OF VIRTUAL WORK OF THERMOELASTICITY IN RIGID DISKS

The equation of virtual work and the second equation of variation, connected with heat conduction, have been
presented in section 3 of this paper. After using constitutive equations (4.2), generalised Lagrange’s principle of
virtual work of thermoelasticity in rigid disks can be presented in the following from: 

=−∂+ ∫∫∫
∂ BBB

B)B(B duudupduf iiiiii

p

δρδδρ &&

0B
1

21B
1
22

BB
* =Θ

−
−

+⎟
⎠
⎞

⎜
⎝
⎛

−
+= ∫∫ dde kkkkijij δεγ

ν
νδε

ν
µνδεµε . (5.1)

Adding the thermal boundary conditions, which were integrated along the proper part of the boundary surface to
(3.5), and multiplying by the variation of Biot’s vector iHδ  , one obtaines for the stress state: 

( ) +∂Θ−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Θ ∫∫

∂ 1BB 0

0 B)(B, dHngdHH
T

iiiiii δδ
λ

& (5.2)
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                       0B)(,B)(,
32 B

0

B

0 =∂⎟
⎠

⎞
⎜
⎝

⎛ Θ−Θ−+∂⎟
⎠

⎞
⎜
⎝

⎛ +Θ+ ∫∫
∂∂

dHnmdHk iiiiiii δ
α
λ

δ
α
λ

,       i = 1,2.

Taking advantage of the approximate form of extended equation of heat conductivity (4.9) as well as
relationships (3.3) and (3.4), one writes down:

⎥
⎦

⎤
⎢
⎣

⎡
+

−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−Θ=
0

*0
0

0
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21
1
11~

λ
η

ν
νηα

ν
ν

χ
ε

λ We
T

H tii &&& , (5.3)

=⎥
⎦

⎤
⎢
⎣

⎡
+

−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−Θ= ∫ dtWe
T

H
t

tii
0 0

*0
0

0
, 1
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1
11~

λ
η

ν
νηα

ν
ν

χ
ε

λ
&&

0
*

0

0

0

0

1
21

1
11

λ
ωη

ν
νλ

ηα
ν
ν

χ
λ

τ +
−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−= e
TT t , (5.4)

where

0
0

0
0

0 ~ τε
λ

τ +Θ= ∫
t

dt
T

. (5.5)

The variation of Biot’s vector can be described as follows: 

δω
λ

δη
ν
νλ

δηα
ν
ν

χ
λ

δτδ
0

*
0

0

0

0
,

1
1

21
1
11

+
−
−

−Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+−= e
TT

H tii . (5.6)

After proper transformation and use of the Gauss-Ostrogradski’s theorem as well as relationships (5.6), equation
(5.2) can be presented as: 

∫∫∫∫ +Θ+Θ−Θ
−
−

+ΘΘ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
B0BB

*
B0

B1BB
1

21B
1
1 d

T
dded

T
c

t δωδτδγ
ν
νδγα

ν
νε

+∂⎟
⎠

⎞
⎜
⎝

⎛ Θ+Θ+∂+ ∫∫∫
∂∂ 21 B

0

BB0

0 B)(,B)(B dHndHgdHH
T

iiiiiii δ
α
λ

δδ
λ

& (5.7)

0B)(B)(,B)(
332 BB

0

B

=∂+∂Θ−∂ ∫∫∫
∂∂∂

dHmdHdHk iiiiii δδ
α
λ

δ .

The above relationship presents the second variation equation connected with heat conductivity for a plane
stress. 

CONCLUSIONS

In the paper, a generalised form of virtual work in thermoelasticity coupled with different types of thermal
boundary conditions and internal sources of heat is presented. Equations for the virtual work principle related
referred a rigid disk by different scenarios of temperature changes along the thickness of the rigid disk as well as
change of boundary conditions are also formulated. Such a case was presented by Nowacki [1,2,3], but the
problem of internal source of heat and different types of boundary conditions in equations of virtual work in
thermoelasticity was neglected in his research. The second variation equation of thermoelasticity connected with
heat conductivity, presented in this paper, was introduced by using the variation of Biot’s vector δHi. Somewhat
different approach was presented by Kączkowski [4], where the variation of temperature increase δΘ was used to
the formulation of virtual work principles. 
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