THE ROLE OF ANTAGONISTIC FUNGI AND BACTERIA LIMITING THE OCCURRENCE OF SOME PHYTOPATHOGENS INHABITING THE SOYBEAN SOIL ENVIRONMENT

Danuta Pięta, Elżbieta Patkowska
Department of Phytopathology, Agricultural University of Lublin, Poland

ABSTRACT

The object of the studies conducted in the years 1998-2000 was the rhizosphere soil of soybean, Mazovia cultivar, and the non-rhizosphere soil. The experimental plot was set in Czesławice near Nałęczów on grey-brown podzolic soil formed from loesses, which was the second complex of soil suitability (good wheat complex). The microbiological analysis showed a much greater number of microorganisms in the rhizosphere soil than in the non-rhizosphere soil. The proportion of pathogenic fungi in the non-rhizosphere soil was almost twice as high in comparison to the rhizosphere, and it was 48.4% and 25.6%, respectively. The dominating pathogenic fungi were *Fusarium* spp., *Rhizoctonia solani* and *Sclerotinia sclerotiorum*. On the other hand, bacteria *Bacillus* spp. (81 isolates) and *Pseudomonas* spp. (231 isolates) as well as fungi *Trichoderma* spp. (64 isolates) were obtained among the microorganisms distinguished by their antagonistic effect towards phytopathogens. These antagonistic microorganisms considerably reduced the occurrence of pathogenic fungi in the soybean rhizosphere, which can testify to their biological activity contributing to the improvement of the phytosanitary condition of the soil.

Key words: pathogenic fungi, antagonistic fungi, *Bacillus* spp., *Pseudomonas* spp.
INTRODUCTION

Various reactions take place within the group of microorganisms and between microorganisms and plants. The highest activity is characteristic of rhizosphere soil. The composition of microorganisms in the root zone undergoes constant changes, for example under the influence of root exudates [17]. On the other hand, the chemical composition of the substances exudated by the roots is related to the genus, species, cultivar, the age of the plant as well as many other biotic and abiotic factors [13, 15, 18].

A huge role in limiting the occurrence of pathogenic fungi in the soil is played by antagonistic bacteria Bacillus spp. and Pseudomonas spp. as well as by fungi Gliocladium spp. and Trichoderma spp. [1, 6, 12].

Establishing the composition of antagonistic microorganisms towards soil-borne phytopathogens is especially important from the point of view of biological protection of plants. That is the reason why studies were undertaken whose purpose was to look for antagonistic microorganisms limiting the occurrence of pathogenic soil-borne fungi.

MATERIALS AND METHODS

The studies were conducted in the years 1998-2000 on the experimental plot located at Czesławice near Nałęczów. The object of the studies was the rhizosphere soil of soybean, Mazovia cultivar, and the non-rhizosphere soil formed from loesses, which was the second complex of soil suitability (good wheat complex).

In each year, samples of rhizosphere soil were taken at the anthesis of soybean plants. The samples of non-rhizosphere soil were taken from the belts mechanically maintained in black fallow. The manner of rhizosphere soil sampling and the laboratory microbiological analysis were in accordance with the method described by Martyniuk et al. [11]. The rhizosphere soil of soybean and the non-rhizosphere soil from the depth of 5-10 cm were taken to sterile Petri dishes. Next, a sterile soil solution with the dilutions from 10-1 to 10-7 was prepared in sterile laboratory conditions. Those dilutions were used to determine the total number of bacteria, the number of bacteria Bacillus spp. and Pseudomonas spp. as well as the total number of fungi in 1 g of d.w. of the examined soil samples [16].

The results concerning the number of bacteria and fungi were analyzed statistically, and the significance of differences was established on the basis of Tukey’s confidence intervals [14].

In each year of the studies, the bacteria isolated (100 isolated from Pseudomonas spp. and 100 isolated from Bacillus spp.) as well as all the isolates of saprophytic fungi from the genera of Gliocladium, Penicillium and Trichoderma were used to determine their antagonistic effect towards such pathogenic fungi as Botrytis cinerea, Fusarium culmorum, F. oxysporum f. sp. glycines, F. solani, Phoma exigua var. exigua, Rhizoctonia solani and Sclerotinia sclerotiorum according to the methods described by Martyniuk et al. [11], Mania and Mania [10] and Pięta [17].

RESULTS AND DISCUSSION

The microbiological analysis showed that the number of bacteria in 1 g d.w. of the rhizosphere soil ranged from 4.52·10⁶ to 6.38·10⁶ colonies, and those of the non-rhizosphere soil from 3.16·10⁶ to 4.18·10⁶ colonies (tab. 1). The mean numbers of bacteria Bacillus spp. in the rhizosphere and non-rhizosphere soil were similar and they were 1.73·10⁶ and 1.13·10⁶ colonies, respectively. The number of Pseudomonas spp. in the soil was higher (3.45·10⁶ colonies, on average) as compared to the non-rhizosphere soil (2.06·10⁶ colonies, on average). The total number of fungi in the rhizosphere soil of soybean was twice as high (mean 78.95·10³ colonies) as in the non-rhizosphere soil (mean 37.44·10³ colonies) (tab. 1).

Table 1. The number of bacteria and fungi in soybean rhizosphere and non-rhizosphere soil

<table>
<thead>
<tr>
<th>Type of soil</th>
<th>Total number of bacteria (mln · g⁻¹ d.w. of soil)</th>
<th>Number of bacteria of Bacillus genus (mln · g⁻¹ d.w. of soil)</th>
<th>Number of bacteria of Pseudomonas genus (mln · g⁻¹ d.w. of soil)</th>
<th>Total number of fungi (thous · g⁻¹ d.w. of soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizosphere of soybean</td>
<td>4.52* 6.38* 5.76* 5.55* 1.16* 2.10* 1.95* 1.73*</td>
<td>3.05* 4.18* 3.14* 3.45*</td>
<td>96.72* 64.60* 75.54* 78.95*</td>
<td></td>
</tr>
<tr>
<td>Non-rhizosphere soil</td>
<td>3.16* 3.20* 4.18* 3.51* 1.08* 0.84* 1.47* 1.13*</td>
<td>1.97* 2.15* 2.05* 2.06*</td>
<td>43.16* 31.30* 37.86* 37.44*</td>
<td></td>
</tr>
</tbody>
</table>

*Means in columns differ significantly (P ≤ 0.05), if they are not marked with the same letter
The proportion of pathogenic fungi obtained from the non-rhizosphere soil was almost twice as high as compared to the rhizosphere soil and it was 48.4% and 25.6%, respectively (figs. 1 and 2). *Fusarium* spp., *Rhizoctonia solani* and *Sclerotinia sclerotiorum* dominated within the group of pathogenic fungi. The genus *Fusarium* was represented by *F. culmorum*, *F. oxysporum* f. sp. *glycines* and *F. solani*. *Gliocladium* spp., *Penicillium* spp. and *Trichoderma* spp. were most often isolated in the group of saprophytic fungi, and they were isolated twice as frequently from the rhizosphere soil of soybean as from the non-rhizosphere soil (figs. 1 and 2).

The increase of the number of microorganisms, especially in the rhizosphere soil of soybean, could have taken place under the effect of this plant’s root exudates. This fact is explained in numerous items of literature concerning the role of compounds exuded by the roots of different cultivated plants [4, 17].

Laboratory studies showed that the non-rhizosphere soil contained twice as few bacteria distinguished by their antagonistic effect towards the examined pathogenic fungi (103 isolates) as the rhizosphere soil (209 isolates) (tab. 2). Besides, almost three times as many antagonistic fungi were obtained from the soybean rhizosphere as from the non-rhizosphere soil. G. catenulatum spp., Penicillium spp. and Trichoderma viride dominated within the group of antagonistic fungi (tab. 2).

Table 2. Antagonistic microorganisms isolated from the rhizosphere of soybean and non-rhizosphere soil (mean from the years 1998-2000)

<table>
<thead>
<tr>
<th>Bacteria and fungi</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rhizosphere of soybean</td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>53</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>156</td>
</tr>
<tr>
<td>Total bacteria</td>
<td>209</td>
</tr>
<tr>
<td>Gliocladium catenulatum Gilman et Abbott</td>
<td>16</td>
</tr>
<tr>
<td>Gliocladium fimbriatum Gilman et Abbott</td>
<td>12</td>
</tr>
<tr>
<td>Gliocladium roseum Bainier</td>
<td>10</td>
</tr>
<tr>
<td>Penicillium spp.</td>
<td>46</td>
</tr>
<tr>
<td>Trichoderma hamatum (Bon.) Bain</td>
<td>3</td>
</tr>
<tr>
<td>Trichoderma harzianum Rifai</td>
<td>9</td>
</tr>
<tr>
<td>Trichoderma koningii Oud.</td>
<td>18</td>
</tr>
<tr>
<td>Trichoderma pseudokoningii Rifai</td>
<td>7</td>
</tr>
<tr>
<td>Trichoderma viride Pers. ex S.F.Gray</td>
<td>21</td>
</tr>
<tr>
<td>Total fungi</td>
<td>142</td>
</tr>
</tbody>
</table>

It should be supposed that a considerable number of antagonistic isolates of Bacillus spp., Pseudomonas spp., Gliocladium spp. and Trichoderma spp. could have had a significant influence on the decrease of the number of phytopathogens in soybean rhizosphere. This fact is confirmed in numerous items of literature [1, 6, 8, 12]. As stated by Księżak and Kobus [7], siderophores formed by fluorescent Pseudomonas inhibit the development of pathogenic fungi in the soil. Besides, antagonistic fungi and bacteria considerably limit the growth and development of pathogenic fungi not only by the exuded siderophores but also by antibiotics with fungicidal and fungistatic effect [2, 3, 5, 9]. On the other hand, the species of Trichoderma spp. are characterized by highly antagonistic effect on phytopathogens, and this effect is based on antibiosis, competition and parasitism [1, 6].

CONCLUSIONS

1. The proportion of pathogenic fungi in the non-rhizosphere soil was almost twice as high as in the soybean rhizosphere.
3. The big numbers of antagonistic microorganisms in the rhizosphere of soybean can testify to their considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil.

REFERENCES

Elżbieta Patkowska
Department of Phytopathology
Agricultural University of Lublin
7 Leszczyńskiego Street, 20-069 Lublin, Poland
tel. (+48 81) 532-30-47
e-mail: epatko@consus.ar.lublin.pl

Responses to this article, comments are invited and should be submitted within three months of the publication of the article. If accepted for publication, they will be published in the chapter headed ‘Discussions’ in each series and hyperlinked to the article.