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ABSTRACT

The study presents theory of layered axially compressed cylindrical rods (shells with a core). The author analysed problems
of critical loads in elasto-plastic states. The plasticity ratio of a critical transverse section was defined by the angleα , and
was related to the slenderness ratio of rods. The obtained theoretical results were compared with the experimental results of
rods made of R35 steel (Standard PN-73/H-74240).
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INTRODUCTION

Basic theory of stability of axially compressed slender rods in elasto-plastic states was formulated by Engesser
(1889; 1895), Kármán (1908; 1910) and Shanley (1947). The theory presented in this paper was first described
by Murawski (2002). According to this theory, in the case of a cylindrical rod (Fig.1), the distances y1 and y2
from the neutral layer to the segment dA in the critical cross-section (without taking ovality into consideration),
and within the elastic or plastic zone, respectively, can be expressed at the moment of losing the stability by the
following relationships:



dA = t R θd ,         y1= R )cos(cos),cos(cos αθθα −=− Ry2 (1)

where R is the average radius of the tube, t – wall thickness, 2*α -angle describing the plastic part of the critical
cross-section, A – area of the critical cross-section.

Fig. 1. Stresses in critical cross-section axially compressed column according
to the Engesser-Kármán-Shanley hypothesis

The equilibrium of forces due to the stresses in relation to the neutral layer is described with formulas
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where P denotes the force, A1 , A2 –  area of the elastic and plastic part of the critical transverse cross section,
respectively, ρ - curvature radius of the neutral layer, E – Young's modulus, Et – tangent modulus. The
equilibrium of moments in relation to the neutral layer is described with the formula:
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where  y is the distance from the outside line of the load to the neutral layer. After integrating Eg. (3) and taking
into consideration the axial moments of inertia J1,  J2 of the tensioned and plastic part, respectively, in the critical
cross-section, yields:
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Analysis of the differential equation of the deflection line of the neutral layer (on the assumption of small

deformations of the line: 
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yd  and of the existence of an equivalent modulus EEK ) yields the following

equation of the deflection line of the neutral layer:
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Having integrated differential Eq. (5), we get the formula for the critical stress:
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where λ denotes the slenderness ratio (depending on boundary conditions). Taking into account Eq. (4), we
determine a formula for the value of the equivalent modulus in relation to Young's modulus as:
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However, this function has a physical sense only for α ∈  90°, 138°), because the following should hold:

1≥ ΕEK/Ε>0.

From Eqs. (1), (2):
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The above function has a physical meaning only for α ∈  (90°, 180°), because the condition: 1≥ Εt /Ε>0 should
be satisfied.

Due to the above-mentioned limitations, the author made his own analysis of the stability of thin-walled rods. He
assumed that in an elastic state the loss of carrying capacity follows the exit of the resultant neutral layer from
the critical transverse section, whereas in an elasto-plastic state - after the entry of the resultant neutral layer into
the plastic zone. Therefore, the author assumed that the state of stresses in the critical transverse section after the
loss of stability and before the loss of carrying capacity results from the superposition of pure compression and
bending (Fig.2). Hence, see Murawski (1992):

        ∑ P = Pk r - Pm - PH = 0  =>   Pk r = Pm  + PH      ,                                                 (9)

 ∑ M =  Pkr  y - Pm  ym + PH  yH  = 0    ,                                              (10)

where:
PH, = σH  AH  = σH  (π – α) tR ⋅ ,   Pm  = σkr(λ ≅  0) Am = σkr (λ ≅  0) · α · tR ⋅  , (11)

σH   is the elasticity limit at compression (variable for different λ and corresponding α) and AH , Am denote the
areas of the transverse section in the elastic and plastic state, respectively. Hence:
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If PH  is attained for grλ then Pkr ( )λ from the range (λ ≅  0;λgr) is attained for the slenderness ratio:
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From the above, we get:
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Fig. 2. Stresses, in critical transverse section of axially compressed tube, after losing the
stability according to the author’s  hypothesis 

The stress  )( 0≅λσ kr has been acknowledged as the characteristic parameter for a given material and marked
by Re*. It follows from the investigation that the function  )(λσ H is of the first order, so the obtained function

 )(λσ kr  is of the second order. The stress  )( 0≅λσ H  has been acknowledged as the characteristic parameter
as well and was marked by R*

H . The linear function  )(λσ H , has been described with formulas:
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where RH
Eu is the elasticity limit, used in the Euler formula to determine grλ . Then:
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After insertion of the Euler formula one gets:
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or:

( ) [ ]Eu
HH

Eu
HEu

HH RR
E

R
R −














−+= *

π
λλσ 1 , ( )

211 




+














+














−= Eu

H

Eu
H

He

Eu
H

kr R
EE

R
RR

E
R

π
λ

π
λ

π
λλσ ** . (18)

The above formulas are suitable to use if the following parameters: ,, **
He RR E RH

Eu, or grλ  are known. The
first two should be determined from a compression test of stocky rods with λ close to 0 .

STABILITY OF LAYERED RODS

The influence of the core can be taken into account by adding its stiffness to the stiffness of the tube, because it
acts parallelly with the tube in the direction of the load. The stiffness and elasticity, according to Hooke's
formula,

      

    aE
a
AP ∆





=   , akP ∆= ,                        (19)

are described with expressions:
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where a denotes the initial length, a∆ – the shortening, k(shell, core) – stiffness of the tube or core, A(shell, core,)  -
area of the cross section of the tube or core, E(zr, PUR) - coefficient of the longitudinal elasticity (of reference and
of the core, respectively). Taking into account that the core made e.g. of polyurethane foam attains its own
compression limit Rc at α much less shortening than the tube reaches its own yield limit and the reference limits:
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it enables one, with the help of formulas (15) and (16), to determine the stresses in the layered rods:

( )=λσ layered
H zr

gr
E

2












λ
π











−+

grλ
λ1



























− zr

gr
H ER

2

λ
π*    ,       (22)

( )
2

2
1














+














+










−=

gr
zr

gr
zrHzre

gr

layered
kr ERR

λ
πλ

λ
λ

λ
λλσ *

_
*

_   ,      (23)

or

( ) [ ]Eu
HH

zr

Eu
zrHEu

zrH
layered
H RR

E
R

R −















−+= *_

_ π
λλσ 1     ,               (24)

( )
211 





+
















+
















−= Eu

zrH
zrzr

Eu
zrH

zrHzre
zr

Eu
zrHlayered

kr R
EE

R
RR

E
R

_
_*

_
*

_
_

π
λ

π
λ

π
λλσ        (25)

Comparisons of graphs of the theoretical and approximated functions from the author’s investigations, see
Murawski (1998) ( =*

eR 346,5 MPa, =*
HR 268,24 MPa, =E 211000 MPa, grλ = 102,6), are presented in Figs

3 and 4. The differences of values assumed by the stress functions in relation to the slenderness ratio do not
exceed 6.9 % for the thin-walled rods and 7.7 % for the layered ones.



Fig. 3. Comparison of graphs of theoretical and approximated functions from researches for thin-walled rods 

Fig. 4. Comparison of graphs of theoretical and approximated functions from the study of layered rods 
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