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ABSTRACT

The paper suggests some indicators for the application of spatial methods in field experimentation. The indicators were based
on the data from two field-breeding experiments with pea and field bean. Partially balanced square lattice designs were
applied. The Smith’s index of soil heterogeneity b, chemical properties of the soil e.g. pH, Mg, P and K contents as well as
data obtained from check plots sown with a single variety were used to evaluate spatial variation across the experiments. The
Smith’s index of soil variability b showed a potential as a convenient tool to assess the purposefulness of background
variation analysis by applying spatial methods. When b<0.6 one can expect a significantly increased efficiency of the
experiment. Therefore the application of the nearest neighbour analysis or kriging to the data obtained from a net of check
plots can produce the concomitant variable which can reduce the experimental error effectively.
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INTRODUCTION

In agricultural research, the key question to answer is generally expressed as a hypothesis to be verified through
field experimentation. The real environmental conditions of an experimental site are produced by an almost
infinite number of biotic and abiotic factors like soil origin, its fertility, moisture, plant damage by insects,
diseases, etc. All of them, together with inherent variability that exists in the experimental material to which
treatments are applied, cause differences in yields from plot to plot, even when sown with a single cultivar.
Differences across experimental plots treated alike constitute the experimental error and may form a particular
spatial structure. For field experimenters it is evident that in order to measure the error validly, randomisation of
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treatments in a number of replications should be applied. Thus a researcher conducting the experiment in natural
conditions knows also that, to some extent, the error can be controlled by blocking and proper arrangement of
plots in the field.

The literary coverage on agricultural experimentation shows that, out of many environmental factors affecting
field experiment results, only soil variability seems to play a pivotal role in adequate treatment effect estimation.
The term “soil variability” is hard to define unequivocally. Soil is said to be homogeneous, heterogeneous or
very heterogeneous. If soil is homogeneous the information from each plot is independent, which is easily
interpretable. Excluding possible technical mistakes, all the spatial interference, if there is any, can be attributed
to inherent properties of the experimental material, such as competitiveness between morphologically different
breeding forms.

Field experimenters are believed to face a problem when soil is heterogeneous. It is then necessary to consider
technical aspects of establishing the experiment and blocking is most frequently considered to be sufficient
enough to control soil variability.

In practice, field experimenters focus mainly on the significance of treatment differences, even if the soil is
heterogeneous. All the other valuable experimental conditions are neglected. Little attention, if any, is given to
possible advantages of detailed result analysis.

When can it be decided if the soil is homogeneous or heterogeneous? How to decide if additional analytic
activities should be undertaken or maybe they should by dome as part of a routine?

The term soil variability comprises all sources of spatial variation and should be considered as the entirety of
environmental factors and human activities as well as their interactions. Thus, regarding a given experiment and
its location in the field, it can be said that in general soil variability is the current state of soil conditions together
with the external factors affecting the soil. For that current state of the soil the plots layout and treatments are
planned as defined by the experiment design. The sequence of the analyses should be the same; first the analysis
of the background of the experiment and then formal verification of the working hypothesis.

Let us consider and verify two seemingly improbable hypotheses based on the results obtained from two plant
breeding experiments with check plots. In field experiments blocking is not essential for valid control of soil
variability. The experimental design applied is not a prerequisite for final statistical field experiment analysis.

MATERIAL AND METHODS

Characteristics of the field experiments

The considerations based on the data from two field- breeding experiments of 1998 with pea and field bean
located at the Tomaszkowo Experiment Station of the University of Warmia and Mazury in Olsztyn. A highly
variable soil of the experimental field is typical for the Warmia and Mazury, Poland’s north-eastern region.

Partially balanced square lattice designs (P_IB for pea and F_IB for faba bean) with four replications laid out in
four experimental strips were applied in both experiments. Twenty-five pea breeding forms were tested in each
replication and the check plots were situated at every 2, 3, 4 and 5 test plot in the subsequent replications. The
pea forms were morphologically very different and so spring wheat was used as an intercrop between the plots to
reduce the interplot interference to the minimum. In the field bean experiment, 49 forms were tested and check
plots were spaced regularly at every 7 plot in each replication.

Before setting up the experiment, soil samples were taken for chemical soil analyses, e.g. acidity (pH) and
content of available nutrients (P2O5, K2O, Mg). A 4x6 m measuring net with total 98 sampling points in pea
experiment and the 4 x 5 m measuring net with total 100 sampling points in faba bean experiment were applied.
The plant height was recorded prior to harvest, after which the plants were threshed and the seeds were weighed.

Statistical result analysis included variance analysis, completely randomised design (CRD), randomised block
design (RBD), incomplete block design (IB) together with the analysis of covariance with concomitant variables
determined according to the Papadakis’s method (NNA) [12] and Bartlett’s [2] iterative approach and kriging
[19]. The methods efficiency was determined [15].



Smith’s index of soil variability

In 1938 Smith [14] suggested a single measure to describe soil heterogeneity, known as index of soil variability
or Smith’s index of soil variability. Based on 44 uniformity trials with a broad spectrum of species, Smith
formulated the law referred to in literature as Smith’s variance law. The law assumes that variance of the plots
consisting of x basic units (Vx) is proportionally related to the variance of basic units (V1) and inversely
proportional to the number of basic units in the plot raised to a power of b.

The parameter b in the equation is the index of soil variability which can assume the values from 0 to 1. The
larger the value, the more homogeneous the soil, and inversely. It is worth noticing that b corresponds to all
sources of environmental variation, not only to the soil variability. The parameter b is calculated as a coefficient
of a logarithmic regression

Uniformity trials used in methodological works, although highly valuable in determining the character of soil
variability, are rarely used in practice mainly due to high costs. The next suggestion by Koch and Rigney [7] and
Lin and Binns [9] was to calculate b from the results of regular experiments with blocking. The idea of Smith’s
variance law has been maintained, but here the variance of plots consisting of x basic units is the variance of
plots of the size of block, while the variance of basic units is the variance of single plots. For a two-factor
experiment in the split-plot design there exists three categories of plots: plots of the size of blocks, sub-blocks
and plots.

Koch and Rigney [7] suggested the following procedure to estimate b from incomplete block designs.

1. Estimation of the expected mean squares according to a proper ANOVA (Table 1)
2. Calculation of comparable variances

3. Logarithmic regression with plots of the size of replication, block and plot (plot size can be expressed as
a real plot size in m2 or as a number of single plots building up the replication and block).

Table 1. Variance components for incomplete block design

Variation d.f. MS EMS

Replications r -1 V1

Blocks adj. r (b-1) V2

Treatments bc-1

Error cr (b-1) - (bc-1) V3

*some effects of blocks are present; parameter λ takes different values according to the type of IB design

Lin and Binns [9] suggested a three-stage procedure for the estimation of b from the randomised block design
(RBD):

1. Estimation of the expected mean squares from ANOVA of RBD
2. Estimation of intra-block correlation ρ



3. Estimation of b following the formula

The intra-block correlation can be calculated for incomplete blocks in a similar way as a measure

a) of correlation of plot means inside blocks ρ1

b) of correlation of block means inside the replication ρ2

Table 2 presents variance components, coefficient of intra-block correlation and the indices of soil variability
calculated for plant height and seed yield. To make some generalization, the results were supported by the results
from two other experiments, conducted earlier with the same species in the same field, laid out with balanced
lattice designs; abbreviation: P_BIB stands for pea experiment and F_BIB for faba bean experiment. The results
in Table 2 confirm a high similarity of the indices of soil variability regardless of the calculation method used.
Excluding the experiment P_BIB, the indices were also similar for the traits studied.

Table 2. Variance components, intrablock correlations and indices of soil variability in breeding experiments
with pea and faba bean

Variance components1 According to
Koch & Rigney

According to
Lin & BinnsSymbol

ρ1 ρ2 b ρ b

Plant height

P_BIB 49.6 0.00 135.9 0.27 0.65 0.36 0.27 0.38

P_IB 2.40 37.3 458.4 0.08 0.02 0.89 0.02 0.87

F_BIB 48.7 17.2 64.7 0.50 0.65 0.22 0.44 0.20

F_IB 47.9 241.2 69.9 0.81 0.16 0.36 0.54 0.15

Seed yield

P_BIB 5756 3242 57854 0.13 0.28 0.63 0.10 0.62

P_IB 14655 0 124281 0.11 0.38 0.60 0.11 0.61

F_BIB 22548 7224 29847 0.50 0.66 0.22 0.44 0.20

F_IB 7745 20717 19096 0.60 0.25 0.36 0.36 0.25

10 – value lower than 0

The coefficient of the intrablock correlation was interrelated with the index of soil variability. Figure 1
demonstrates the empirical relation between values of rho and b. Generally, the higher the rho, the lower the b,
which means the higher the correlation between adjacent plots, the higher the soil variability.

For the four experiments, the conclusion about soil variability seems to be explicit. The soil in the experiments
with pea was much more homogenous than in the experiments with faba bean.



Fig. 1. Interrelationship between the coefficient of intraclass
correlation and the index of soil variability in pea and faba
bean breeding experiments

What is the practical aspect of the statement and in what way can the value of b be useful? So far, the index of
soil heterogeneity has been used for planning future experimental activities in the same field, such as

4. Optimisation of a plot size (Smith’s cost law [14])
5. Determination of a convenient plot size [6]
6. Determination of the capacity of a block and the required number of replications [9].
7. Determination of the shape of plots in a block [21].
8. The magnitude of the index of soil variability points to purposefulness of the analysis of spatial

variation in the experiment and a possible gain in the efficiency of the experiment due to alternative
analysis used [4].

Modelling of background variation

For modelling the background variation neighbour analysis and kriging were used. The first one was calculated
according to the Papadakis’s nearest-neighbour first difference [12]. Essentially, this technique involves
subtracting the mean treatment yield from the yield of each plot and, subsequently, using the average of the
residual yields of adjacent plots as the concomitant variable in the analysis of covariance. The iterative approach
suggested by Bartlett [2] was applied. The iteration was continued until the nearest-neighbour local trends for
each treatment averaged to zero.

Wilkinson et al. [20] discussed some limitations of the iterated nearest-neighbour analysis. These include loss of
efficiency due to yield correction with the treatments means, and upward bias in the treatment F-ratio. However,
these limitations are usually not significant unless there are substantial non-linear trend effects in the experiment.

Kriging is a means of spatial prediction that can be used for soil and agricultural properties. It is a form of
weighted local averaging. It is optimal in the sense that it provides estimates of values at unrecorded places
without bias and with minimum and known variance. It is worth noticing that there are several other
interpolation methods such as linear interpolation, inverse distance, least squares polynomials, etc., but they are
often theoretically unsatisfactory. They may give biased interpolation, they provide no estimate of the error of
interpolation. Neither do they attempt to minimize that error.

Kriging is based on the theory of regionalized variables developed by Matheron [10,11] and Krige [8]. For an in-
depth study of geostatistical methods, books by Journel and Huijbregts [5] (mining) and Webster and Oliver [19]
(pedology) can be used as a source of reference.

The first stage in kriging is the measurement of spatial variation in a property of interest. This measure is called a
semivariance.

Consider a transect along which observations have been made at regular intervals to give values z(i), i = 1,2,..,N,
then the relation between pairs of points, h interval apart, can be expressed as the variance of the differences
between all such pairs. So, the per-observation variance is half this value thus:



[1]

For example, the estimate of semivariance for a single transect with no missing observation when h=1 is:

[2]

A general form of this equation is given by:

for i = 1,2,..., N(h) [3]

where N(h)is the number of observation pairs {z (i), z (i + h)} with a distance h.

The expression gamma(h) is known as the semivariance, and is a measure of similarity, on average, between
points a given distance h, apart. The more alike are the points, the smaller is gamma(h) and vice versa.

These equations refer to the single transect but the generalization of that formula to the two-dimensional area is
quite straightforward. Besides, different directions for semivariance calculation can be taken. It can be done
vertically or horizontally, it can be done for diagonals or it can be done for all possible directions. The limitation
is the number of pairs, N(h), for a given distance, h. To obtain a valid estimation of semivariance, it should be
minimum about 20-30 [18].

As above, gamma depends on h, and the function relating the two is known as the semivariogram. The results of
the works by Trangmar et al. [17], Perrier and Wilding [13], Stroup et al. [16] suggest that the typical
semivariogram model for the agricultural studies is mainly linear or spherical. These models have certain
important characteristics: (i) it shows the nature of the geographic variation in the property of interest, and (ii) it
is needed to provide kriged estimates at previously unrecorded points.

In most instances gamma (h) increases with increasing h to a maximum, approximately the variance of the data.
The distance a is known as the range and it is assumed that points closer together than the range are spatially
dependent; points further apart bear no relation to one another. The intercept C0, when h=0, is known as nugget
variance and this phenomenon is known as nugget effect. Practically, the nugget effect embraces fluctuation of
the property that occurs over distances shorter than the sampling interval and also the measurement errors. The
component C represents the range of variance due to spatial dependence in the data. The sum of the nugget
variance C0 and the component C is known as a sill, when variance is stabilising.

The chemical properties of the soil as indicators of soil fertility and the information on plant height and seed
yield from check plots sown with a standard variety were used to describe the structure of spatial variation across
the experiments. The semivariances of the properties were estimated and finally kriging was used to predict
proper values for each plot.

RESULTS AND DISCUSSION

The maps (Fig. 2) show spatial distribution of pH and available macronutrients across the experimental site. The
first 16 m of the field width correspond to the width of four experimental strips of the experiments. It was only
for the Mg content in the experiment with pea and for all the properties in the experiment with faba bean that
spatial dependence could be noticed visually from the maps. The distribution of semivariances versus distance h
confirmed these remarks (Fig. 3). The linear model was fitted for the Mg content in the pea experiment and
spherical models for all the soil properties in the other experiment (Table 3).



Fig. 2. Contour map of soil properties of pea (a) and faba bean (b)
experimental sites





Fig. 3. Semivariograms of soil properties for pea (a) and faba bean (b) experimental sites

a) b)

Table 3. Semivariogram parameters of soil properties in the grain legumes experiment

Trait Effect a(in m) C0 C1* C0+C1

Chemical properties

P_IB pH pure nugget effect - - - -

Mg linear - 0.105 0.008 -

P2O5 pure nugget effect - - - -

K2O pure nugget effect - - - -

F_IB pH spherical 18.0 0.005 0.070 0.075

Mg spherical 22.5 0.450 2.185 2.635

P2O5 spherical 19.5 2.200 16.494 18.694

K2O spherical 17.4 0.900 7.228 8.128

Traits noted from check plots

P_IB plant height pure nugget - - - -

seed yield pure nugget - - - -

F_IB plant height linear - 154 6.451 -

seed yield pure nugget - - - -

* slope in the case of linear model

Semivariances estimated on the basis of the values of plant height and seed yield from check plots demonstrated
spatial dependence only for plant height in the experiment with faba bean (Fig. 4a). The semivariances of plant
height and seed yield for pea and seed yield for faba bean showed random variation. The distribution of the
values predicted by kriging for the traits are presented in the contour maps (Fig. 4b).



Fig. 4. Semivariograms (a) and contour maps after kriging (b) for plant height and seed
yield of standard variety in pea and faba bean check plots

Table 4 contains the mean square errors from the proper ANOVAs and ANCOVAs. Smith’s indices of soil
variability b>0.6 and b<0.3 were taken for pea and faba bean experiments, respectively. It can be assumed that
the soil in the experiment with pea (P_IB) was homogenous and information from adjacent plots was
independent. All the methods produce similar values of MSEs. It means that an application of a much advanced
design when we know b-value before laying out the experiment and much more sophisticated data analysis after
the execution of the experiment will not be very effective, albeit globally, alternative approaches give certain
advantages in the sense of recognising the background variation and reducing MSE in relation to the completely
randomised design (up to 10%, depending on the method and the trait analysed). On the other hand, in the
experiment with faba bean (F_IB) in which the value of b was low (b<0.3), the values of MSE from the methods
were highly different. In comparison with the MSE from the completely randomised design (CRD), all the
methods significantly reduced the experimental error.



Table 4. Mean square error from ANOVA and ANCOVA of alternative approaches by nearest neighbour
analysis (NNA) and kriging (KR)

P_IB F_IB

Plant height Seed yield Plant height Seed yieldVariance analysis

Smith’s b>0.6 Smith’s b<0.3

ANOVA

CR 498 136335 359 47559

RBD 485 121572 281 37225

IB 458 124281 70 19098
CR with standard 527 145776 110 30302

ANCOVA

NNA (II iteration) 467 120751 69 16382

KR (pH, Mg, P2O5, K2O) 500 121519 194 33733

KR (plant height of standard) 500 129178 153 32500

KR (seed yield of standard) - 125718 - 24404

The greatest reduction of MSE was obtained for ANCOVA with residuals from adjacent plots according to NNA
as the concomitant variable. It is worth noticing that in the estimation of the faba bean seed yield additional
information from check plots and, subsequently, a proper analysis of covariance led to the value of MSE similar
to the analogous value from the classical analysis of the incomplete block design.

Table 5 presents the indices of relative efficiency (RE) of the methods applied in relation to the completely
randomised design for which the value equals one. The NNA had the highest efficiency in the estimation of pea
plant height (but only 6% to CRD). As for the estimation of seed yield, only the methods with kriging produced
values of RE on the level of RBD efficiency (about 10%). The similar estimates of MSE in different data
analyses do not ensure that randomisation and blocking will adequately compensate for spatial effects [22].

Table 5. Relative efficiency (RE) of different approaches in analysis of the pea and field bean results (in
relation to completely randomised design (CRD)

P_IB F_IB

Plant height Seed yield Plant height Seed yieldVariance analysis

Smith’s b>0.6 Smith’s b<0.3

ANOVA

RBD 1.01 1.09 1.21 1.21

IB* 1.02 1.00 3.47 1.71

CRD with standard 0.94 0.94 3.25 1.57

ANCOVA

NNA (II iteration) 1.06 1.00 5.17 2.24

KR (pH, Mg, P2O5, K2O) 1.00 1.12 1.85 1.41

KR (plant height of standard) 1.00 1.06 2.35 1.60

KR (seed yield of standard) - 1.08 - 1.63

* to RBD

In the faba bean experiment the analysis of variance for IB design and CRD with standard were highly effective
and in the context of the alternative approaches to data analysis they set the threshold of efficiency on a high
level. All the methods gave significantly improved efficiency. The most effective method was NNA, especially
in plant height estimation, in which it was over 5 times as efficient as the completely randomised design. Kriging
showed a similar efficiency as classical ANOVA for the experiment with check plots sown with the standard
variety and slightly lower than for classical analysis of incomplete block design. It clearly proves that as for a
high variability of the experimental site, the NNA method or kriging can be a good alternative for classical
approaches to data analysis from plant breeding field experiments. This suggestion is in accordance with the one
of Ball et al. [1]. On the basis of breeding trials with spring wheat, the authors concluded that the analysis with



NNA-adjusted data in comparison with unadjusted RCB analysis resulted in larger estimates of variance
components. When spatial effects occur, Ball et al. [1] suggested that plant breeders should consider spatial
methods as a supplemental tool in effective data analysis.

CONCLUSIONS

1. With a high soil variability of the experimental site, a precise analysis of the background variation
should precede treatment comparisons.

2. Smith’s index of soil variability calculated prior to or for the present experiment can be used as a
convenient tool to assess the purposefulness of analysis of the background variation in the experiment
to improve the efficiency of the experiments by applying the alternative methods of data analysis.
Depending on the magnitude of b, one can expect:
b > 0.6 – little gain, if any
0.3 < b < 0.6 – the alternative approaches should be considered
b < 0.3 – very significant efficiency improvement.

3. Blocking as an experimental tool of the allocation of treatments to experimental units and the reduction
of interblock soil variability from the errors involved in comparing treatments can be supported by
alternative methods, like NNA or kriging, for local control of spatial variation.

4. Kriging on the basis of a net of check plots placed on experimental units inside the experimental strips
can produce one of the concomitant variables facilitating efficient treatment comparison.

5. Quick methods for evaluation of purposefulness of correcting data on spatial variability should be
incorporated.
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