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ABSTRACT

The aim of this paper is to propose a procedure for interval estimate of nitrogen dose x,, which allows to achieve a chosen value
of wheat production function derivative r. It is shown that the point estimator of x, follows asymptotically normal distribution.
That fact is used for construction of an asymptotic confidence interval for x,. It is also shown that substituting » with proportion
of input and product unit prices allows to use the proposed formula for interval estimation of economically optimal nitrogen dose.
An example of such application based on winter wheat fertilizing experiment is given.
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INTRODUCTION

The choice of fertilizer doses is one of the most basic choices which must be made by a farmer. It influences yield
achieved and ,consequently, income from plant production.

In this paper the choice of optimal nitrogen dose for winter wheat will be considered. The relationship of wheat yield
and nitrogen dose is an instance of production function f{x), where x is a value of the nitrogen dose. Consequently,
calculation of optimal dose must be preceded by the choice of an applicable production function. Some of the most
popular functions for modelling relationship between yield and nitrogen dose are the quadratic function and the
segmented linear function. Nevertheless, they have some flaws. In the case of the quadratic function it is symmetry: in
reality, the decrease of yield after reaching maximum, even when physically observed, is slower than the increase
before it. For the segmented linear function, it is the sharp change of yield reaction to slightly different doses. In this
paper the exponential function proposed earlier by the author [Kobus 2000] will be used as production function.

In an economically optimal point, the proportion (price of expenditure unit / price of product unit) equals the value
of production function's derivative [Panek 1993]. In our case, the product unit is one ton of winter wheat and the
expenditure unit is one kilogram of nitrogen.



Let's assume that the mentioned proportion is 7.

Hence the problem of estimating economically optimal nitrogen dose is reduced to the estimation of x for a given
value of derivative .

The main aim of this paper is to assess the possibility of interval estimation of economically optimal nitrogen dose
in the case of nonlinear regression function.

Production function

The yield of any plant is a random variable highly dependent on weather and soil conditions, hence the production
function can be understood as a relation of the conditional expected value of yield and fertilizer doses rather than
relation between yield and fertilizer doses.

Let’s consider the following nonlinear regression function:
f(x) =6, —exp(-b,x) (1)

where theta,, theta;, theta, are positive real number parameters. The derivative of regression function (1) is
f'(x)=theta;*thetal *exp(-theta,). Let r be a given value. The problem is to estimate x, such that f'(x,)=r. Solving that
equation gives the following function of parameters theta; and theta,:

L log(6,)+log(6,)—log(r)
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The natural estimator of x, may be obtained by substituting parameters theta; and theta, in equation (2) with their
least squares estimates

log(é2)+log(é'l)—log(r)
X, = =
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Since it was not possible to give explicit formula for theta; and theta, estimators under the assumption of
independent additive normal error, i.e.

y,=6,—6 exp(-6,x,)+¢, i=1...n, )

the exact theoretical distribution of x, estimator remains unknown. In the next section asymptotic approach to
distribution of the vector theta and x, estimates will be explained.

Asymptotic distribution of the vector theta and xr estimators

In case of normally distributed error, the least squares estimator (LSE) vector theta is equivalent to maximal
likelihood estimator (MLE) which has several useful properties: strong consistency, asymptotic normality and
asymptotic efficiency [Rao 1982], [Serfling 1991]. In this section asymptotic distribution of vector theta will be
identified using existing results for MLE.

Maximal likelihood function for considered model is:
1(10)=(—=] exp| 53 (- (-0 ) |
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According to properties of MLE, the estimator of vector theta follows an asymptotic normal distribution with an
expected value equal to the vector theta and covariance matrix equal to inverse of a Fisher information matrix:

2
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It is easy to see that due to the form of model (4) Lyera may be written down in a form more friendly to use:
0’ log L(y,0) 1| o (x) of(x)
b=t =050 =712\ 56, o6
pm 3x3 =l p e 3x3 (7)

Where the partial derivative of f{x;) with respect to theta, equals 1, with respect to theta; it is —exp(theta,*x;), and
with respect to theta, it is theta,*x;*exp(theta, *x;).



If we denote by V matrix of derivatives with elements vy, equal to the partial derivative from f{x;) with respect to
theta, then
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Summing up the above facts the covariance matrix of the vector theta estimator may be expressed as sigma’(V'V)™!,
and consequently the estimator of x, is a function of asymptotically normal vector of theta parameters estimators.

According to the theorem given by Serfling [Serfling 1991], a vector function g of the asymptotically normally
distributed vector variable Z,~AN(mu, b’ *Sigma) is also asymptotically normally distributed 1i.e.
g(Z,)~AN(g(mu), b>,*DSigmaD"), assuming that every component of the vector function is a real function and the
differential D of function g in the point z=E(Z) is non-zero.

Applying the above-mentioned theorem to the estimator of x, gives its asymptotic distribution:
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where the derivative vector
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Confidence interval

The problem of interval estimate of x, is reduced now to well-known estimation of expected value of normal
distribution though both parameters of normal distribution expected value and standard deviation, depend on
parameters of regression function: theta; and theta, and on given value of derivative 7. In that case the construction
of confidence interval can be based on central function:

X, =X,
S |
i (12)
with assumption that it follows t-student distribution with v degrees of freedom [Rao 1982]. Such assumption can be
justified if estimator of x, and its variation estimate are independent variables with following distributions:

2 2 2 2
X, ~ N(xr,()'xf ), (VSX, /er)N X - 13)
The first postulate of x, estimator normality was validated in the previous chapter. The second postulate has been
also checked for various number of Y's observations n. For each number there was fitted, with satisfactory result,
Gamma distribution for variable (S%/sigma’,) with shape and scale parameters close to (#-3)/2 regardless of the
values of parameters : theta; and theta, of regression function (1).

For example for n=6 was fitted Gamma(1.56758;1.49895) and for n=96 Gamma(48.6025, 46.3893). Multiplying
(S*/sigma’y,) by (n-3) resulted in Gamma(1.56758, 0.49965) and Gamma(48.6025, 0.498809677) respectively.
Hence

(n— 3)Sf .
0_—2’ ~ Xin-3)
; (14)
and
X —%,
S ~ t(n%) .

%, . (15)



Use of central function (15) resulted in following formula for two-sided confidence intervals:

P {xr € (x,. = er Lansy X S Ty )} =l-a,
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and in following formula:

P{xr < (xr _Sx t(2a,n—3)9 OO)} =l-«a,
' ) (17)

for left-sided, where t(alpha,n-3) is a critical value from Student's t distribution with (n-3) degrees of freedom.

SIMULATIONS

The confidence intervals derived in the previous chapter are asymptotic. The remaining question is whether any
number of observations short of infinity is sufficient for the asymptotic properties of x, estimator distribution to
show. In this chapter the results of simulations concerning that question will be shown.

The paper was inspired by a real experiment [Fotyma et al. 1992] where for each value of independent variable x (0,
50, 100, 150, 200, 250) there were 16 observations of dependent variable Y. Calculated values of theta; and theta,
estimators were respectively /.997 and 0.0278. Hence for the simulations purpose following values of parameter
theta, were chosen: (0.020, 0.025, 0.030, 0.035, 0.040) and for parameter theta;: (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0). For
each combination of parameters values 96 observations of variable Y were generated (16 for each level of the
variable x), with error term following normal distribution N(0, 0.01). For every set of generated values of variable Y
parameters theta; and theta, were estimated, and using formula (2) value of x, estimator was calculated. That
procedure was repeated 10000 times.

Picture 1 is typical for all investigated values of parameters: theta,, theta, and considered values r of derivative.

Empirical distribution of x, estimator is approximately normal.
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Picture 1. Empirical distribution of x, estimator for theta,=0.035, theta;=4 and »=0.005.
Source: own calculations.

Parameters of x, estimator distribution for all combinations of parameters: theta;, theta, and r=0.005 are presented
in tables 1 and 2.



Table 1. Mean values of x, estimator

theta,
theta, 0.020 0.025 0.030 0.035 0.040
1.0 69.293 64.348 59.678 55.518 51.856
1.5 89.615 80.606 73.234 67.156 62.068
2.0 104.003 92.119 82.833 75.390 69.285
2.5 115.158 101.045 90.274 81.772 74.875
3.0 124.271 108.336 96.352 86.984 79.439
3.5 131.976 114.501 101.490 91.390 83.296
4.0 138.650 119.841 105.941 95.206 86.637

Source: own calculations.

In all cases the difference between mean x, estimator and the real value of x, was very small, ranging from -4.3% up
to 1.3% of standard deviation sigma,, on average -0.2%. Hence the bias of x, estimator can be treated as irrelevant
for practical application, see picture 2.
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Picture 2. Average values of x, estimator versus true values of x,.

Source: own calculations.

Dependence of sigma,, value and parameters theta; and theta, is more complicated than respective relation for
expected value. As one may see in table 2 sigma,, decreases with the increase of parameter theta;. The increase of
parameter theta, results at first in reduction of sigma,, and from some point in the enlarging of sigma,, again. The
position of the turning point depends on the value of parameter theta,.

Table 2. Standard deviations of x, estimator

theta,
theta, 0.020 0.025 0.030 0.035 0.040
1.0 2.340 2.445 2.610 2.831 3.122
1.5 2.481 2.428 2.471 2.582 2.757
2.0 2.391 2.263 2.251 2.314 2.437
2.5 2.249 2.089 2.051 2.087 2.180
3.0 2.106 1.931 1.879 1.900 1.975
3.5 1.974 1.794 1.735 1.746 1.807
4.0 1.855 1.675 1.612 1.616 1.669

Source: own calculations.



Also in the case of the standard deviation sigma,, the difference between empirical and theoretical values was very
small, ranging this time from -0.3% up to 2.5% of the standard deviation theoretical value, on average it was 0.3%.

What remains to be verified is empirical confidence level of asymptotic interval for x,.

In table 3 there are presented percentages of covering x, by two-sided confidence intervals for considered
combinations of parameters of theta; and theta,.

Table 3. Observed level of confidence for theoretical value 95%

theta,
theta, 0.020 0.025 0.030 0.035 0.040
1.0 79.7% 88.6% 91.5% 92.8% 94.2%
1.5 90.3% 92.3% 93.2% 93.8% 94.3%
2.0 92.2% 93.4% 93.7% 94.1% 94.4%
2.5 93.0% 93.8% 94.0% 94.2% 94.5%
3.0 93.4% 94.1% 94.2% 94.3% 94.6%
3.5 93.7% 94.2% 94.3% 94.4% 94.6%
4.0 93.8% 94.3% 94.4% 94.5% 94.6%

Source: own calculations.

The observed confidence level is on average lower by 1.8% than theoretical one. It may be noted that divergence is
getting bigger when values of the parameters theta; and theta, are small, and on the other hand when theta; and
theta, increase the divergence almost disappear.

Example of application

In picture 3 there are presented results of fertilizing experiment for winter wheat. Fitting of regression function (1)
resulted in values of estimators of: theta,=0.0278, theta;=1.997 and theta,=5.53, while their covariance matrix

-1

96.000 —21.302  702.461
GSV'VY =03175 21302 17.058  -112.657
702.461 —112.657 12736.512

One of the questions stated by researchers was: "what dose of nitrogen is economically optimal"? or rather to be
more precise: "what is the minimal dose of nitrogen which gives reasonable chance of achieving maximal profit"?
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Picture 3. Yields of winter wheat for different levels of fertilizing.
Source: own calculations.



Let’s assume that proportion (price of expenditure unit / price of product unit) is the same as an average in third
quarter of the last year [Ceny w ... 2010] i.e. 0.00462.

Hence the problem of estimating economically optimal nitrogen dose is reduced to estimation x, for given value of
derivative r=0.00462.

The point estimator of x, calculated by formula (2) equals 89.43. To calculate standard deviation of that estimator
one must first calculate the vector of derivatives D, in our case

D=[0 18.017 -1923.150]

Now the estimator of x, standard deviation can be calculated with application of the following formula:

A2 Ty -1y
S = \/ oD(V'V)D ,
X, , (18)
which results in S,=13.29.

Having determined the values of x, estimator and its standard deviation it is possible to obtain two-sided or one-
sided confidence intervals for x, using formula (16) or (17) respectively.

Now it is time to recall the question of researchers: "what is the minimal dose of nitrogen which gives reasonable
chance of achieving maximal profit"? Let's denote "minimal dose" by x,, and "reasonable chance" by (1-alpha).
Now Xy, is such value that: P(x, >= x,,)=alpha and P(x, <= x,,)=1-alpha. It could be argued that if one wants to be
confident on (1-alpha) level that dose x,, is minimal but sufficient for achieving the highest profit, he should set x,,
to such value that probability that x, exceeds x,, is alpha.

In table 4 are presented values of x,,.

Table 4. Approximate x,,

1-alpha Xm
0.05 67.35
0.1 72.28
0.2 78.19
0.3 82.44
0.4 86.05
0.5 89.43
0.6 92.81
0.7 96.42
0.8 100.67
0.9 106.58

Source: own calculations.

Therefore, if we assume that "reasonable chance" /-alpha was set to 0.90 we should use about 106.5kg of nitrogen
per hectare.

FINAL CONCLUSION

Distribution of x, estimator can be modelled with satisfactory quality by normal distribution with an estimator of
expected value given by formula (3) and an estimator of standard deviation given by formula (18).

Proposed interval estimation procedure of x, allows taking into account preferred level of probability of using
economically optimal nitrogen dose.
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