
Electronic Journal of Polish Agricultural Universities (EJPAU) founded by all Polish Agriculture Universities presents original papers and review
articles relevant to all aspects of agricultural sciences. It is target for persons working both in science and industry, regulatory agencies or
teaching in agricultural sector. Covered by IFIS Publishing (Food Science and Technology Abstracts), ELSEVIER Science - Food Science and
Technology Program, CAS USA (Chemical Abstracts), CABI Publishing UK and ALPSP (Association of Learned and Professional Society
Publisher - full membership). Presented in the Master List of Thomson ISI.

ELECTRONIC
JOURNAL
OF POLISH
AGRICULTURAL
UNIVERSITIES

2011
Volume 14

Issue 1
Topic

GEODESY AND
CARTOGRAPHY

Copyright © Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, ISSN 1505-0297
PIÓRKOWSKI A., MYSQL SPATIAL AND POSTGIS – IMPLEMENTATIONS OF SPATIAL DATA STANDARDS,
EJPAU, 14(1), #03.
Available Online http://www.ejpau.media.pl

MYSQL SPATIAL AND POSTGIS – IMPLEMENTATIONS
OF SPATIAL DATA STANDARDS

Adam Piórkowski

Department of Geoinfomatics and Applied Computer Science,
AGH University of Science and Technology, Cracow, Poland

ABSTRACT

Spatial databases have become a very important domain of databases recently. A standardization of the storing and analyzing
methods provides consistency of data, makes it easier to combine these data and allows to integrate projects.
There is a problem of standardization for leading public domain databases with spatial extensions described in this article. The
two main standards - OGC OpenGIS and SQL/MM are presented. The consideration focuses primarily on two databases:
PostgreSQL + PostGIS and MySQL Spatial. The problem of standard implementation is the main issue. The way of integration
spatial extension with database system is described. The level of standard implementation is discussed. Examples for analytical
functions are given. Several available language constructions of creating queries are presented.
The integration and implementation level of presented spatial extensions differs. MySQL Spatial is well integrated, but realizes
only part of OGC OpenGIS standard. PostGIS implements two standards almost entirely, but there way of spatial database
creating is much more complicated. The considerations are illustrated with examples in SQL.

Key words: spatial data, spatial databases, ogc, opengis, sql, sql/mm spatial, postgresql, postgis, mysql spatial

INTRODUCTION

The dynamic development of spatial information systems is a source of vast amounts of data. While it is possible to
create implementations only dedicated to the processing of such data, the binding of these data with other
information resources, often giant, is difficult. The solution is the construction of integrated systems with spatial
information management systems using relational databases.

Spatial data in relational databases can be saved according to dedicated projects and needs, even by adding an
additional columns with coordinates describing the facts gathered. This solution is not flexible, is tied to the project.
Introducing the class custom implementations of spatial data is also not a good option, as it often is dependent on the
used database product, it is not portable, and the lack of coupling with other solutions provide difficulties in
exchanging or transferring data. These problems can be bypassed by introducing a standard that defines the basic
types, operations and ways to store spatial data. There are two spatial data standards defined for relational databases:
OpenGIS (OGC) [8,9] and SQL/MM [2,4].

OpenGIS is spatial data standard for relational databases, proposed by Open Geospatial Consortium. Standard SFS
(Simple Features SQL) includes the objects, the format of the recording, basic operations on them, and indexing.
Unfortunately, the problem is solved only for the development of the planar systems (2D). The downside is

unresolved by the end of the definition of reference systems. The standard of SQL / MM (Part Three – Spatial),
which inter alia allows for more dimensions of data, description of objects as well as curves, better integration of
systems of reference, and provides many more features. Described briefly the standards are implemented in varying
levels in popular database management systems, including in the public domain.

Spatial extensions for relational databases
There are spatial data extensions for each relational database management system. In most cases these extensions
are built in. The Oracle databases have own extension Oracle Spatial (Oracle Locator) [10,14,3]. IBM DB2 uses
Spatial Extender to provide spatial data [1]. The version 2008 of MS SQL provides Spatial Storage – a module for
spatial data [5]. SQLite uses SpatiaLite as a spatial extension [13].

MySQL uses MySQL Spatial extension [6]. MySQL Spatial is well integrated with database management system,
but realizes only part of one standard (OpenGIS) and only the 2D dimension without reference sets. The spatial
extension is available only for MyISAM, InnoDB, NDB, BerkeleyDB (obsolete, removed) and ARCHIVE database
engines. MySQL is released under the General Public License (GPL) and the commercial license.

The standalone version of PostgreSQL [12] database doesn’t provide a spatial extension, but there is an outer open
solution – PostGIS [11,7]. PostGIS implements two standards almost entirely, but it has some limitations associated
with installation and integration. It provides own extensions for spatial data – extended formats of spatial data
(EWKT, EWKB, HEXEWKB), mode dimensions (2D, 3D, 3DZ, 3DM), and geography objects (using sphere or
spheroid). PostGIS is released under the GNU General Public License [11].

SPATIAL DATA STANDARDS

There are two open standards of spatial extension for databases: OpenGIS and SQL/MM Spatial.
OpenGIS (SFS - Simple Features SQL) is a standard by the Open Geospatial Consortium. It provides objects
definition, data format (WKT, WKB), set of spatial functions and methods of indexing. Weaknesses of OpenGIS
standard are the limitations of object dimensions to 2D and the lack of spatial reference systems.

The SQL/MM Spatial standard provides much more functions (for example defines the objects approximated with
curves) and enables more dimensions of objects.

Naming convention
OpenGIS is an earlier standard. The proposed names are too general and may overlap with other functions of the
database. To avoid such a situation the newer standard SQL/MM Spatial provides names that begin with the prefix
ST_. Standard SQL/MM Spatial implements all standard OpenGIS features. Parameters of function calls for both
standards are identical. The function names are very similar - the comparison are summarized in Tables 1
(geometrical objects) and 2 (functions).

Table 1. Naming convention for objects

OpenGIS SQL/MM

Point

Curve

Linestring

Surface

Polygon

GeomCollection

Multipoint

Multicurve

Multilinestring

Multisurface

Multipolygon

ST_Point

ST_Curve

ST_Linestring

ST_Circularstring

ST_CompoundCurve

ST_Surface

ST_CurvePolygon

ST_Polygon

ST_Collection

ST_Multipoint

ST_MultiCurve

ST_Multilinestring

ST_Multisurface

ST_Multipolygon

Table 2. Naming convention for functions

OpenGIS SQL/MM

Equals

Disjoint

Touches

Within

Overlaps

Crosses

Intersects

Contains

Relate

ST_Equals

ST_Disjoint

ST_Touches

ST_Within

ST_Overlaps

ST_Crosses

ST_Intersects

ST_Contains

ST_Relate

IMPLEMENTATIONS OF SPATIAL DATA STANDARDS
IN MYSQL SPATIAL AND POSTGIS

Integration

MySQL Spatial is closely integrated with the database management system. This allows to easily create tables that
contain columns of geometric objects. Geometric types are already available after installation. It is possible to add
geometric columns to an existing database. The example below shows the creation of tables describing
municipalities (area represented by POLYGON) and roads (mileage represented by LINESTRING).

mysql=> CREATE DATABASE daneprzestrzenne;
mysql=> CONNECT daneprzestrzenne;
mysql=> CREATE TABLE Gminy(id_gminy INT, nazwa_gminy VARCHAR(100), obszar POLYGON);
mysql=> CREATE TABLE Drogi(id_drogi INT, przebieg LINESTRING);

The same operation in PostGIS is hard to perform when database already exists or database was created without
a proper template. The example below shows an error, that occurs in this case.

psql=# CREATE DATABASE przestrzenna1;
CREATE DATABASE

psql=# \c przestrzenna1
You are now connected to database "przestrzenna1".

psql=# CREATE TABLE Gminy(id_gminy INT, nazwa_gminy VARCHAR(100));
CREATE TABLE

psql=# SELECT AddGeometryColumn('', 'gminy','obszar',-1,'POLYGON',2);
ERROR: function addgeometrycolumn(unknown, unknown, unknown, integer, unknown,
integer) does not exist at character 8
HINT: No function matches the given name and argument types. You might need to add
explicit type casts.

To create database with geometrical objects the selection of proper template is needed. Geometrical columns can be
added by special function AddGeometryColumns in the way shown on example below.

psql=# CREATE DATABASE przestrzenna TEMPLATE=template_postgis;
CREATE DATABASE

psql=# \c przestrzenna
You are now connected to database "przestrzenna".

psql=# CREATE TABLE Gminy(id_gminy INT, nazwa_gminy VARCHAR(100));
CREATE TABLE

psql=# SELECT AddGeometryColumn('', 'gminy','obszar',-1,'POLYGON',2);
 addgeometrycolumn
--
 public.gminy.obszar SRID:-1 TYPE:POLYGON DIMS:2
(1 row)

An alternate way to enable spatial features for existing database is to run a set of scripts written in plpgsql language.

Standard functions implementation
Reflections on the level of implementation of the standard of value is illustrated by the example. There are four
roads and one municipality on a simple map (Fig.1).

1

Gmina
STAROPOLSKA

0 5 10

5

10

15

20

15 20 25

2

3

4

Fig. 1. A simple map

To describe these objects in database following commands are needed to be executed:

INSERT INTO Gminy (id_gminy, Nazwa_gminy, obszar)
 VALUES (1, 'Staropolska',
 GeomFromText('POLYGON((6 3, 6 19, 21 19, 21 3, 6 3))'));

INSERT INTO Drogi(id_drogi, przebieg)
 VALUES (1, GeomFromText('LINESTRING(0 10, 15 10, 25 13)', -1));
INSERT INTO Drogi(id_drogi, przebieg)
 VALUES (2, GeomFromText('LINESTRING(0 2, 10 0)', -1));
INSERT INTO Drogi(id_drogi, przebieg)
 VALUES (3, GeomFromText('LINESTRING(10 10, 10 15)', -1));
INSERT INTO Drogi(id_drogi, przebieg)
 VALUES (4, GeomFromText('LINESTRING(0 5, 10 0)', -1));

Simple functions
The example below shows, that simple functions like length calculating are correct for both database systems. In
MySQL Spatial length calculating is performed by function GLENGTH (not defined by standard) because function
LENGTH is reserved for strings.

mysql> SELECT id_drogi, GLENGTH(przebieg) FROM Drogi;
+----------+-------------------+
| id_drogi | GLENGTH(przebieg) |
+----------+-------------------+
1	25.4403065089106
2	10.1980390271856
3	5
4	11.1803398874989
+----------+-------------------+

mysql> SELECT id_drogi, LENGTH(przebieg) FROM Drogi;
+----------+------------------+
| id_drogi | LENGTH(przebieg) |
+----------+------------------+
1	61
2	45
3	45
4	45
+----------+------------------+

psql=# SELECT id_drogi, LENGTH(przebieg) FROM Drogi;
 id_drogi | length
----------+------------------
 1 | 25.4403065089106
 2 | 10.1980390271856
 3 | 5
 4 | 11.1803398874989
(4 rows)

3.2.2 Relations between objects
In this section, there is a problem of differences in implementations of the standard described. This includes
designating function relationships between objects. In the case of PostGIS simple functions of intersection and
disjoint work correctly, in the case of MySQL Spatial - no. This is illustrated by the following example.

mysql> SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Contains(obszar, przebieg);
+----------+-------------+
| id_drogi | Nazwa_gminy |
+----------+-------------+
| 3 | Staropolska |
+----------+-------------+
1 row in set (0.00 sec)

psql=# SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Contains(obszar, przebieg);

 id_drogi | nazwa_gminy
----------+-------------
 3 | Staropolska
(1 row)

Containing is tested properly in both systems for this example. Wrong results occur for Disjoint and Intersects
functions.

mysql> SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Disjoint(obszar, przebieg);
+----------+-------------+
| id_drogi | Nazwa_gminy |
+----------+-------------+
| 2 | Staropolska |
+----------+-------------+
1 row in set (0.00 sec)

psql=# SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Disjoint(obszar, przebieg);
 id_drogi | nazwa_gminy
----------+-------------
 2 | Staropolska
 4 | Staropolska
(2 rows)

In the presented example the Road number 4 is not classified by MySQL Spatial as disjoint from municipality.
Intersection is not tested correctly too:

mysql> SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Intersects(obszar, przebieg);
+----------+-------------+
| id_drogi | Nazwa_gminy |
+----------+-------------+
1	Staropolska
3	Staropolska
4	Staropolska
+----------+-------------+
3 rows in set (0.00 sec)

psql=# SELECT id_drogi, Nazwa_gminy FROM Drogi, Gminy
 WHERE Intersects(obszar, przebieg);
 id_drogi | nazwa_gminy
----------+-------------
 1 | Staropolska
 3 | Staropolska
(2 rows)

MySQL currently does not implement this functionality properly. These functions are replaced by analogous
functions that operate on the minimum bounding rectangles (MBR). For example, calling the intersection function
returns the result of the intersection for MBR.

Intersects(@geom, @geoin)
MBRIntersects(@geom, @geoin)

 Reduction of object dimensions
Another difference is an ability to reduce dimensions of objects, that are results of some functions. PostGIS can
produce envelope that is 1D for object of such dimensions, MySQL Spatial produces polygons for all.

mysql> SELECT id_drogi, AsText(ENVELOPE(przebieg)),
 Dimension(ENVELOPE(przebieg)) AS "Wymiar" FROM Drogi;
+----------+--+--------+
| id_drogi | AsText(ENVELOPE(przebieg)) | Wymiar |
+----------+--+--------+
1	POLYGON((0 10,25 10,25 13,0 13,0 10))	2
2	POLYGON((0 0,10 0,10 2,0 2,0 0))	2
3	POLYGON((10 10,10 10,10 15,10 15,10 10))	2
4	POLYGON((0 0,10 0,10 5,0 5,0 0))	2
+----------+--+--------+

psql=# SELECT id_drogi, AsText(ENVELOPE(przebieg)),
 ST_Dimension(ENVELOPE(przebieg)) AS "Wymiar" FROM drogi;
 id_drogi | astext | Wymiar
----------+---------------------------------------+--------
 1 | POLYGON((0 10,0 13,25 13,25 10,0 10)) | 2
 2 | POLYGON((0 0,0 2,10 2,10 0,0 0)) | 2
 3 | LINESTRING(10 10,10 15) | 1
 4 | POLYGON((0 0,0 5,10 5,10 0,0 0)) | 2

Aggregation of data
The aggregation of data allows to create queries that process a set of object. There is a simple implementation of
aggregation implemented in both database systems. For example calculating the sum of all road lengths can be
processed in the way shown below:

mysql> SELECT SUM(GLength(przebieg)) FROM Drogi;
+------------------------+
| SUM(GLength(przebieg)) |
+------------------------+
| 51.8186854235951 |
+------------------------+
1 row in set (0.00 sec)

psql=# SELECT SUM(ST_Length(przebieg)) FROM Drogi;
 sum

 51.8186854235951
(1 row)

PostGIS enables advanced query constructions, that contain arrays or unions of entities. MySQL Spatial has no
implementation for such operations like these shown below:

psql=# SELECT Length(ST_Union(ARRAY(SELECT przebieg FROM drogi)));
 length

 51.8186854235951
(1 row)

psql=# SELECT Length(ST_Union(przebieg)) FROM drogi;
 length

 51.8186854235951
(1 row)

Spatial operators
Simple geometric operations with spatial operators are implemented only in PostGIS. MySQL has no implemented
functions, that return an geometrical object as result. This applies to operators like ConvexHull, Difference,
Intersection and Union.

CONCLUSION

Not only commercial database management systems, but also a public domain has extensions that allow the storage
of spatial data. Portability and unification is ensured by the public standards: OGC SFS and SQL/MM Spatial. The
level of integration and implementation of expansion is different – MySQL Spatial is well integrated, but realizes
only part of one standard and only the 2D dimension without reference sets. PostGIS implements two standards
almost entirely, but there are some difficulties associated with installation and integration. These considerations are
illustrated with examples in SQL. Tests were carried out for systems PostgreSQL 8.4.2 + PostGIS 1.5.0 and MySQL
5.1.44. Results for the latest available version of MySQL (Oracle) and for the most recent version published by the
previous owners of the project (MySQL AB and Sun) are identical.

REFERENCES

1. IBM DB2 - Spatial Extender l [@:] http://www-01.ibm.com/software/data/spatial/
2. ISO/IEC 13249-3:1999, Information technology – Database languages – SQL Multimedia and Application Packages – Part

3: Spatial, International Organization For Standardization, 2000.
3. Jankiewicz K., Wojciechowski M., 2004. Standard SQL/MM: SQL Multimedia and Application Packages [SQL/MM

Standard: SQL Multimedia and Application Packages]. Proceedings of IX Seminarium PLOUG 'Przetwarzanie
zaawansowanych struktur danych: Oracle interMedia, Spatial, Text i XML DB', Warszawa, 2004 [in Polish].

4. Melton J., Eisenberg A., 2001. SQL Multimedia and Application Packages (SQL/MM). SIGMOD Record 30(4), 2001.
5. MS SQL 2008. Spatial Storage [@:] http://technet.microsoft.com/en-us/library/bb933790.aspx
6. MySQL Spatial [@:] http://dev.mysql.com/doc/refman/5.1/en/spatial-extensions.html
7. Netzel P., 2009. PostGIS, PostgreSQL. Proceedings of Conference ‘Wolne Oprogramowanie w Geoinformatyce’, Wrocław,

2009 [in Polish].
8. OGC - The Open Geospatial Consortium, [@:] http://www.opengeospatial.org/
9. OpenGIS Implementation Specification for Geographic information – Simple feature access – SQL option. [@:]

http://www.opengeospatial.org/standards/sfs
10. Oracle Spatial, [@:] http://www.oracle.com/technology/documentation/spatial.html

11. PostGIS Home Page [@:] http://postgis.refractions.net/
12. PostgreSQL Home Page [@:] http://www.postgresql.org/
13. SQLite Home Page [@:] http://www.sqlite.org/
14. Wojciechowski M., Matuszczak L., 2003. Oracle interMedia na tle standardu SQL/MM i prototypowych systemów

multimedialnych baz danych [Oracle interMedia on the background of the standard SQL/MM and prototype multimedia
database systems]. Proceedings of IX Conf. PLOUG, Zakopane, 2003 [in Polish].

Adam Piórkowski
Department of Geoinfomatics and Applied Computer Science,
AGH University of Science and Technology, Cracow, Poland
email: pioro@agh.edu.pl

Accepted for print: 13.12.2010

