
Electronic Journal of Polish Agricultural Universities (EJPAU) founded by all Polish Agriculture Universities presents original papers and review 
articles relevant to all aspects of agricultural sciences. It is target for persons working both in science and industry, regulatory agencies or 
teaching in agricultural sector. Covered by IFIS Publishing (Food Science and Technology Abstracts), ELSEVIER Science - Food Science and 
Technology Program, CAS USA (Chemical Abstracts), CABI Publishing UK and ALPSP (Association of Learned and Professional Society 
Publisher - full membership). Presented in the Master List of Thomson ISI. 
 

 

ELECTRONIC  
JOURNAL  
OF POLISH  
AGRICULTURAL  
UNIVERSITIES  

2010
Volume 13

Issue 4
Topic
CIVIL 

ENGINEERING
 
Copyright © Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, ISSN 1505-0297 
KAŹMIERCZAK M., JĘDRYSIAK J., 2010. FREE VIBRATIONS OF TRANSVERSALLY GRADED PLATE BANDS, 
EJPAU, 13(4), #21.  
Available Online http://www.ejpau.media.pl 
 
 

FREE VIBRATIONS OF TRANSVERSALLY 
GRADED PLATE BANDS 

Magda Kaźmierczak, Jarosław Jędrysiak 
Department of Structural Mechanics, Technical University of Łódź, Poland 

ABSTRACT 

In this note free vibrations of a plate band with a smooth and a slow gradation of macroscopic properties called a transversally 
graded plate band have been analysed. In this contribution the tolerance and the asymptotic models of these bands have been 
presented. Then, these models have been used to calculate fundamental free vibrations frequencies of the plate band, by means of 
the Ritz method. Moreover, these results have been compared to results obtained by a computer programm of the finite element 
method (FEM). 
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INTRODUCTION 

Free vibrations of a thin plate band with a span L are investigated in this note. The plate band has a functionally 
graded material macrostructure (on the macrolevel) along its span, cf. the book by Suresh and Mortensen [14]. On 
the other hand, on the microlevel it has tolerance-periodic microstructure, cf. Jędrysiak [4]. It is also assumed that 
the material properties of the plate are independent from x2-coordinate. The fragment of the plate band is shown in 
Fig. 1. One assumes that the microstructure size is described by the length l of “the cell” and is very small in 
comparison to the span L of the plate. 

Plates of this kind are described by the partial differential equations with highly oscillating, tolerance-periodic, non-
continuous coefficients. These equations are not a proper tool to investigate special problems. Thus, various 
averaged models, describing these plates by equations with smooth, slowly-varying coefficients, have been 
formulated . Because these plates are treated as made of a functionally graded material, cf. [14], they are called 
transversally graded plates. 

Approaches used to analyse macroscopically homogeneous media, e.g. periodic, are usually applied also to describe 
functionally graded structures. Some of these techniques are discussed in the book [14]. One has to mention these 
models, which are based on the asymptotic homogenization, cf. the book [8]. Unfortunately, the governing 
equations of these models neglect the effect of the microstructure size on the behaviour of these structures. Some 
extensions in the asymptotic modelling applied to functionally graded laminates are shown by Woźniak [18]. 



 

Fig. 1. The fragment of a thin transversally graded plate band 

 
To take into account this effect the tolerance modelling (cf. the books [19, 20]) may be applied. The applications of 
this method to various periodic structures are shown in a series of papers, e.g. [1,2,6,10,11,15,16,17]. The tolerance 
modelling is also adopted for dynamic problems of functionally graded structures, e.g. [7,12,13]. Some applications 
to dynamic and stability problems for thin tolerance-periodic plates are shown by: Jędrysiak [3, 4]; Jędrysiak and 
Michalak [5]; Kaźmierczak, Jędrysiak and Wirowski [9], where the finite differences method is used to obtain free 
vibrations frequencies. The extended list of papers may be found in the books edited by Woźniak, Michalak and 
Jędrysiak [20], by Woźniak et al. [19].  

There are three aims of the paper. The first one is to present the tolerance and the asymptotic models of vibrations 
for thin transversally graded plate bands. The second aim is to calculate the free vibration frequencies of a simply 
supported plate band in the framework of the tolerance and asymptotic models using the Ritz method. The third is to 
compare obtained results of fundamental, lower frequencies to results calculated by the finite element method 
(FEM). 

FORMULATION OF THE PROBLEM 

It is assumed that presented considerations are treated as independent of x2-coordinate. Let one denote 1xx = , 

3xz = , ],0[ Lx∈ , ]2/,2/[ ddz −∈ , where d is a constant plate thickness. It means that in this case one assumes 
that the plate band is described in the interval ),0( L=Λ , with the basic cell ]2/,2/[ ll−≡Ω  in the interval Λ , 
where l, ,Ll <<  is the length of the basic cell. Moreover, it is assumed that .ld <<  One recalls that a cell with a 
centre at Λ∈x  is denoted by )2/,2/()( lxlxx +−≡Ω . Let the plate band be made of two elastic isotropic 
materials, perfectly bonded across interfaces, and characterised by Young’s moduli EE ′′′, , Poisson’s ratios ν′′,ν′  
and mass densities ρ′′ρ′, , respectively. It may be assumed that ,),(),( Λ∈ρ xxxE  are tolerance-periodic, highly 
oscillating functions in x, but Poisson’s ratio ν′′=ν′≡ν  is constant. Hence, under condition EE ′′≠′  and/or 

ρ′′≠ρ′  the plate material structure may be treated as transversally functionally graded in the x-axis direction. By ∂ 
denote a derivative of x. Let w(x,t) ( Λ∈x , ),( 10 ttt∈ ) be a plate band deflection. 

Let one introduce tolerance-periodic functions in x, describing plate band properties: the mass density per unit area 
of the midplane μ  and the bending stiffness B , which may be defined by: 

 ).(),()( )1(12 2
3 xEBxdx d
ν−≡ρ≡μ  (1) 

From the well-known assumptions of the Kirchhoff-type plate theory it may be obtained for transversally graded 
plate bands the partial differential equation of the fourth order for deflection w(x,t) 

 ,0),()()],()([ =μ+∂∂∂∂ txwxtxwxB &&  (2) 

with coefficients being highly oscillating, non-continuous, tolerance-periodic functions in x. Equation (2) describes 
free vibrations of the plate bands under consideration. 



BASIC CONCEPTS 

Following the book [19] some of basic concepts of the tolerance modelling are reminded below. For tolerance-
periodic plates some of them were also presented in [4]. 

A cell at ΩΛ∈x  is denoted by ΩΩ +≡ xx)( , })(:{ Λ⊂Λ∈=Λ xx ΩΩ . The known averaging operator for an 
integrable function f is defined by 
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For a tolerance-periodic function f in x its averaged value calculated from (3) is a slowly-varying function in x. 

Let one denote the k−th gradient of function ,),( Λ∈= xxff  α= ,...,1,0k , ( 0≥α ), by fk∂ ; ff ≡∂0 . Let 
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Function ),(~ )( ⋅xf k  is called the periodic approximation of fk∂  in ,),( Λ∈xxΩ  α= ,...,1,0k . 
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Function )(Λ∈φ αH  is the highly oscillating function, ),( ΩΛ∈φ α
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For α=0 let one denote )0(~~ ff ≡ . 

Let h(⋅) be defined on Λ  a highly oscillating function, ),(2 ΩΛ∈ δHOh , continuous together with gradient ∂1h. 
However, gradient ∂2h is a piecewise continuous and bounded. Function h(⋅) is the fluctuation shape function of the 
2-nd kind, ),(2 ΩΛδFS , if it depends on l as a parameter and conditions hold: 

(1º) ∂kh∈O(lα−k) for k=0,1,…,α, α=2, ∂0h≡h, 

(2º) <μh>(x)≈0 for every ΩΛ∈x , 

where μ>0 is a certain tolerance-periodic function; l is the microstructure parameter. 



MODELLING ASSUMPTIONS 

Following the books [19, 4] and using the basic concepts, the fundamental modelling assumptions may be formulated. 
The micro-macro decomposition of the plate band deflection w is the first assumption: 

 ,,,,1),,()(),(),( Λ∈=+= xNAtxVxhtxWtxw AA K  (4) 

with ),(),(),,( 2 ΩΛ∈⋅⋅ δSVtVtW A  (for every t) as basic kinematic unknowns, and ),()( 2 ΩΛ∈⋅ δFShA . Function 
W(⋅,t) is called the macrodeflection; VA(⋅,t) are called the fluctuation amplitudes; and hA(⋅) are the known fluctuation 
shape functions. 

The second modelling assumption is the tolerance averaging approximation, in which terms O(δ) are assumed to be 
negligibly small in the course of modelling, e.g. in formulas: 
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where δ is a tolerance parameter. 

TOLERANCE MODELLING PROCEDURE 

Following the monograph [19] the modelling procedure may be outlined in the form. 

The first step is the formulation of the action functional 
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with the lagrangean Λ given by 
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From the principle stationary action applied to Α , after some manipulations, one may obtain the known equation 
(2) of free vibrations for thin transversally graded plate bands. 

In the next step of the tolerance modelling we substitute micro-macro decomposition (4) to action functional (5). In 
the third step, applying averaging operator (3) to the action functional one obtains the tolerance averaging of 
functional ))(( ⋅wΑ  in the form 
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with the averaged form >< hΛ  of lagrangean (6) 
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The principle stationary action applied to hΑ  leads to the system of Euler-Lagrange equations with coefficients 
being slowly-varying functions in x. 



TOLERANCE MODEL EQUATIONS 

From the system of Euler-Lagrange equations after some manipulations one may arrive to the following system of 
equations for W(⋅,t) and VA(⋅,t): 
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The above equations involve the underlined term with the microstructure parameter l. The coefficients of equations 
(9) are slowly-varying functions in x. The equations (9) together with micro-macro decomposition one (4) constitute 
the tolerance model of thin transversally graded plate bands. This model makes possible to take into account the 
effect of the microstructure size on free vibrations of these plates. For the plate band described in Λ=(0,L) one has to 
formulate boundary conditions only for the macrodeflection W (on the edges x=0, L), but not for the fluctuation 
amplitudes VA, A=1,…,N. 

ASYMPTOTIC MODEL EQUATIONS 

It may be shown that ).( 4lOhh BA >∈μ<  Neglecting the term with l in equation (9)2 one arrives to the algebraic 
equations for the fluctuation amplitudes VA: 

 .)( 1 WhBhhBV BBAA ∂∂>∂∂<>∂∂∂∂<−= −  (10) 

After substituting the right-hand side of equation (10) into (9)1 the following equation for W(⋅,t) has been obtained: 
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The above equation and micro-macro decomposition (4) represent the asymptotic model of thin transversally graded 
plate bands. This model may be obtained in the framework of the formal asymptotic modelling procedure, cf. the 
books [19, 4]. In equation (11) the effect of the microstructure size on free vibrations of the transversally graded 
plates is neglected. The asymptotic model describes the macrobehaviour of the plate bands under consideration. 

EXAMPLE – FREE VIBRATIONS OF A PLATE BAND 

Introduction 

Let us consider free vibrations of a simply supported thin plate band with span L along the x-axis. The properties of 
the plate band are assumed to be described by the following functions: 
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where γ(x) is a distribution function of material properties, cf. Fig. 2. 

 
Fig. 2. A cell of the transversally graded plate band 



Let one restrict the considerations assuming only one fluctuation shape function, i.e. A=N=1. Denoting h≡h1, V≡V1, 
micro-macro decomposition (4) of field w(x,t) may be written as: 

 ),,()(),(),( txVxhtxWtxw +=  

where ),(),( ),,( 2 ΩΛ∈⋅⋅ δSVttW V  for every ),( 10 ttt∈ , ),()( 2 ΩΛ∈⋅ δFSh . 

Since the cell has a structure shown in Fig. 2 the periodic approximation of the fluctuation shape function h(x) is 
assumed in the form 

 ,),()],()/2[cos(),(~ 2 Λ∈∈+πλ= xxzxclzzxh Ω  

where parameter c(x) is determined by 0~~ >=μ< h  and is a slowly-varying function in x. From the aforementioned 
condition it takes the form 
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where )(~ xγ  is the periodic approximation of the distribution function of material properties γ(x). In calculations of 

derivatives hh ~ ,~ ∂∂∂  parameter c(x) is treated as constant.  

Denote: 
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Hence, tolerance model equations (9) for free vibrations of the transversally graded plate bands under consideration 
may be written as: 
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Moreover, using denotations (14), for the plate band equation (11) takes the form: 

 .0ˆ])/~ˆ[( 2 =μ+∂∂−∂∂ WWBBB &&  (16) 

Equation (16) describes free vibrations of this plate band within the asymptotic model. It may be observed that all 
coefficients of equations (15) and (16) are slowly-varying functions in x. 

The Ritz method applied to the asymptotic model equation 

Because it is too difficult to find analytical solutions of equations (15) or (16), which have slowly-varying, 
functional coefficients, approximate formula of free vibrations frequencies may be obtained by means of the known 
Ritz method, cf. Jędrysiak [4]. In this method relations of the maximal strain energy maxΥ  and the maximal kinetic 
energy maxΚ  are determined. 

Because the plate band under consideration is simply supported, the solution to equation (16) and equations (15) are 
assumed in the form: 

 ),cos()sin(),(),cos()sin(),( txAtxVtxAtxW VW ωα=ωα=  (17) 

with a wave number α and a free vibrations frequency ω. Introducing denotations: 
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and using (17) formulas of the maximal energies – strain maxΥ  and kinetic maxΚ  for the tolerance model take the 
form: 

 
,)(

],)~2ˆ[(
2422

2
1

max

2222
2
1

max

ωμ+μ=
+α−α=

lAA
ABAABAB

TM

TM

VW

VVWW
(Κ

Υ  (19) 

However for the asymptotic model they have the form: 
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Using the conditions of the Ritz method: 
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from relations (19) after some manipulations we obtain the following formulas: 
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of the lower −ω  and the higher +ω  free vibrations frequencies, respectively, for the tolerance model. 

In the framework of the asymptotic model conditions (21) are applied to equations (20) and after manipulations one 
arrives in the following formula: 

 ,
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of the lower free vibrations frequency ω . 

Results 

In order to compare obtained results in the numerical example the considerations are restricted only to the lower 
free vibrations frequency ω− (or ω) calculated by the tolerance (or the asymptotic) model. 



Let us consider the distribution function of material properties γ(x) in the following form: 

 )/(sin)(~ 2 Lxx π=γ . (24) 

Moreover, we introduce dimensionless frequency parameters given by: 

 ,, 22)1(12222)1(122 22 ω≡Ωω≡Ω ′
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with the free vibrations frequency ω− and ω determined by equations (22) and (23), respectively. 

 

Fig. 3. The plots of the lower frequency parameters Ω−, Ω versus the ratio of mass densities ρ″/ρ′ 
(ν=0.3, ratio l/L=0.1, ratio d/l=0.1) 

 
Fig. 4. The plots of the lower frequency parameters Ω−, Ω versus the ratio of Young’s moduli E″/E′ 

(ν=0.3, ratio l/L=0.1, ratio d/l=0.1) 

 
Calculational results are shown in Figs. 3-4. These figures present the results obtained in the framework of the 
tolerance (or the asymptotic) model (using the Ritz method) in comparison with those calculated by the FEM 
method. Fig. 3 shows plots of the lower frequency parameters versus ratio ρ″/ρ′ (for E″/E′=0.25, 0.5, 0.75, 0.8), but 
Fig. 4 shows curves of these parameters versus ratio E″/E′ (for ρ″/ρ′=0.25, 0.5, 0.75, 1). These calculations are 
made for the Poisson’s ratio ν=0.3, the wave number α=π/L, ratio l/L=0.1 and ratio d/l=0.1. 



From results presented in Figs. 3-4 the following remarks may be formulated: 

1. values of the lower free vibrations frequencies depend on ratios E″/E′ and ρ″/ρ′, i.e.: 
• they increase with the increasing of ratio E″/E′ (cf. Fig. 4), 
• they decrease with the increasing of ratio ρ″/ρ′ (cf. Fig. 3); 

2. differences between frequencies calculated by the tolerance (or the asymptotic) model and those by the FEM 
method are small for ratios E″/E′>¼, cf. Fig. 4. 

REMARKS 

The tolerance modelling applied to the known differential equation of Kirchhoff-type plater, having a transversally 
graded macrostructure, leads to the tolerance model equations. This modelling method makes possible to replace the 
governing differential equation with non-continuous, tolerance-periodic coefficients by the system of differential 
equations with slowly-varying coefficients. The derived tolerance model equations describe the effect of the 
microstructure size on the overall behaviour of transversally graded plates under consideration. However, in the 
framework of the asymptotic model this effect is omitted. 

In order to compare results obtained in the framework of the proposed models with results by the FEM method, the 
example is restricted to investigate only the lower free vibrations frequency. From this example it may be observed 
that these frequencies decrease with the increasing of the ratio of the mass densities ρ″/ρ′ and increase with the 
increasing of the ratio of the Young’s moduli E″/E′. Moreover, it may be observed that differences between 
frequencies calculated by the tolerance and the asymptotic models and those by the finite element method are small 
for ratios E″/E′>¼. 

Other special problems of vibrations for the transversally graded plates and some evaluations of obtained results 
will be shown in forthcoming papers. 
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