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ON THE INFLUENCE OF BOUNDARY LAYER PHENOMENA  
ONTO AVERAGED TEMPERATURE FIELD 

Ewaryst Wierzbicki 
Department of Applied Mathematics, Warsaw University of Life Sciences, Poland 

ABSTRACT 

The subject of the contribution is a stationary heat conduction problem in the periodically inhomogeneous rigid conductor. As 
a tool of modeling the tolerance averaging technique is taken into account, [1]. The aim of the considerations is to reformulate the 
tolerance averaged model of the considered composites to the form which consists of a single equation for averaged temperature 
and separated formulas represented a certain solution of the boundary layer equation. The characteristic feature of such form of 
the tolerance model equations is that the single equation for the averaged temperature field includes an integral operator being 
a certain generalization of the well-known effective modulus matrix. 
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INTRODUCTION 

In the most of approaches to the mathematical modeling of the boundary-layer phenomena in the periodic 
composites the typical investigations are pointed out to formulate an equation or a system of equations in which 
basic unknowns describing the evolution of boundary perturbations onto the interior of the composite are 
inde[endent on the averaged temperature field. In the framework of tolerance averaged model, [1,2] this idea leads 
to the investigation of a possible form of two separations: 1o from the model system equations a certain part not 
depending on the averaged temperature or averaged displacements field and 2o the similar separation of the 
fluctuation amplitudes from model equations. Such separations are rather impossible over the direct mathematical 
way without any changing of the mathematical character of the model equations system and that is why various 
approximations of the tolerance model equations, cf. [3], as well as some new interpretations of constitutive 
relations have been applied to obtain an independent on the averaged temperature or averaged displacements 
description of the boundary layer phenomena, cf. [4].  
The aim of this paper is to show how to reduce the tolerance model equations for the heat conduction for the micro-
periodic composites to the single differential-integral equation with the averaged temperature field as a basic 
unknown. Then, fluctuation amplitudes should depend on the averaged temperature by direct mathematical 
formulas. Mentioned above form of the tolerance model equations will be obtained by a certain adaptation of the 
concept of a variation of constants method, well-known in the classical differential calculus course.  



Throughout the paper we shall restrict ourselves to the composites with a periodic two-dimensional hexagonal-type 
microstructure made of the perfectly bonded constituents. We shall assume that considered composite occupy the 
region 3),0( RH ⊂×Ξ=Ω  and every cross-section of the composite which is perpendicular to 30x -axis 
direction is a sum of a large number of identical regular hexagons, cf. Fig.1. As an additional restriction we shall 
assume that for any ),0( Hz ∈  the periodicity hexagon is independent on the  32 /π -rotations with respect to the 

axis parallel to the 30x -axis direction including centers points of the mentioned regular hexagons as axes of the 
rotations.  

 
 

Fig. 1. A cross-section of the two-dimensional periodic composite with internal symmetries 

The well-known stationary heat transfer equation based on the Fourier heat conduction law will be taken as the 
subject of investigation. Under denotations ],,[ 011 ∂∂=∇ , ],,[ 300 ∂=∂  it can be written in the form 

fw =∇⋅∂+∇ )()( K              (1) 

Symbol )(⋅= ww  stand here for the temperature field defined in 3),0( RH ⊂×Ξ=Ω . At the same time 
by )(⋅= ff  we denote the known density of heat sources, by )(⋅= cc  is the specific heat and  
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is the anisotropic conductivity matrix. Here and in the sequel denotation ),( 21 xxx =  have been applied. Under 

mentioned above assumptions heat conduction matrix ),( 3x⋅= KK  as well as specific heat ),( 3xcc ⋅=  are certain 

fields periodic with respect to vectors 321 ,, ttt  determining the basic hexagon included in 210 xx -plane, 
133221 tttttt ⋅=⋅=⋅ , |||||||||||| 321 ttt == . We shall also assume heat flux continuity conditions in directions 

normal to interfaces between the constituents of the considered composite.  

It is the well-known fact that due to the discontinuous and highly oscillating form of functional coefficients 
)(⋅= cc , )(⋅= KK ,  the direct applications of (1) to the analysis of special problems in most cases is rather 

difficult. That is why the mentioned above heat conduction problem is usually replaced, under some additional 
assumption, by some other problems formulated in the framework of models describing by equations with more 
regular coefficients. The characteristic feature of these models is that in the framework of which we deal with the 
microstructure of the considered composite characterized by a certain scalar parameter 0>λ . In this case 
conductivity coefficients )(⋅= cc , )(⋅= KK , in (1) depend on λ . Since the  tolerance averaged model of the 



considered composite will be taken as the subject of consideration we shall assume that λ  is sufficiently small 
when compared to the characteristic length dimension of the region Ξ . Tolerance model consists of the system of 
differential equations with constant coefficients and have averaged temperature )()( 1

0 Ω∈⋅= SVuu  and fluctuation 

amplitudes  )(),( 1
0 Ω∈⋅= SVtww AA  , NA ,...,1= , as new basic unknowns. The averaging operation is taken here 

in the sense of averaged integral operator respect to an arbitrary chosen regular hexagon in 210 xx -plane. Introduced 

above functional space )(1
0 ΩSV  is a certain new space consisting of slowly-varying functions. For particulars the 

reader is referred to [1,2].  

MODEL EQUATIONS 

There are known two methods by application of which the tolerance averaged model can be obtained. The first one 
is the method based of a new concept of the extended stationary action principle, cf. [1]. This method has been 
resulted in many applications dealing functionally graded materials. To the periodic problems the orthogonalization 
method explained in [2] usually have been applied. Since the subject of this paper is a certain periodic material 
structures we shall restrict ourselves to the tolerance model equations obtained by the last method. Following 
procedure explained in [2], we look for the temperature field in the form  

),,(),(),,(),,( 3333 txxWxxgtxxutxxw AA+=     (3) 

where ),,(),,( txcwctxu xx 3
1

3 〉〈〉〈= −
 is the averaged temperature field and ),,( txW xA

3  are extra unknowns 
which are usually referred to as  the fluctuation amplitudes. Here and in the sequel 〈⋅〉  stand for the integral 
averaged operator over the basic hexagon, cf. [1,2], and the summation convention holds. Capital Latin superscripts 

BA, ,... run over N,...,1 , where N is a number of fluctuation amplitudes. Shape functions ),( zxg A , NA ,...,1= , 
caused by the material structure of the composite, should be periodic and should satisfy some additional conditions 
like 0=〉〈 )(zg A  and )(),( λOzg A ∈⋅  for any ),( Hz 0∈ , cf. [1,2]. It must be emphasized that the heat flux 
continuity sassumption in directions normal to interfaces between the constituents imposes on the residual field 

),,(),( txWxg xx AA
33 in (3) as well as on the material properties of the considered composite additional restrictions. 

For example if shape functions are piecewise linear then tolerance averaged model holds exclusively not for all 
conductivuty matrices (2). However, if shape functions are properly chosen, cf. [2], p103, this inconvinience does 
not impose any restrictions onto conductivity matrix (2). The system of tolerance averaged equations for the 
stationary heat transfer equation (1) in the considered hexagonal-type composite will be rewritten in the form  
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The above system consists of a single equation describing the evolution of the averaged temperature field u and of N 
equations describing the evolution of fluctuation amplitudes WA, NA ,...,1= . These equations are conjugated by 
terms AA Wg 〉∇∇⋅〈A

 

and ug A 〉∇⋅〈∇ A  in the first and in the second equation, respectively. Under the periodic 
structure of the composite we shall observe that all averaged coefficients in equations (4) depend on z  variable and 
are independent on x –variable. In the special case in which h=0 model equations (4) reduces to the form presented 
in [1], p. 102.   
To simplify considerations we shall restrict ourselves to the hexagonal-type structures satisfying the following two 
assumptions: 

Assumption 1. The material structure of the anisotropic conductor is invariant under 32 /π – rotations with 
respect to the center of a regular periodicity cell.  

Assumption 2. The sequence Ngg ,...,1  of the shape functions is invariant under 32 /π  – rotations with the center 
of a regular periodicity cell as the origin of the rotation. 

It can be shown that under the above assumptions tolerance equations (3) can be transformed to the equivalent 
system of equations with the isotopic coefficients, cf. [5,6].   



To this end following [6] we shall observe that nN 3=  and for a certain positive real n  introduce new 
representation  ),(),( zQxgzxg a

r
a
r =+1 , na ,...,1=  of periodic shape functions Ngg ,...,1  in which Q  denote the 

32 /π -rotation with respect to the center of the arbitrary hexagon chosen from the set of basic hexagon. This 
rotation is the same for every z -variable. At the same time we shall introduce related numbering of fluctuation 
amplitudes AW , NA ,...,1= , which will be replaced by the sequence a

rW , na ,...,1= , 3,2,1=r . To introduce 
the alternative form of tolerance model equations (4) we shall also introduce new fluctuation amplitudes which are 
certain vector fields defined in 2R  and given by 

a
r

ra Wtv =                                                        (5) 

Formula (5) represent an invertible linear transformation between ),,( 121
aaa WWW  and av . Let us introduce the 

following averaged coefficients  
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where 
12 tt Q= , 23 tt Q= , 31 tt Q= , are three vectors determines the basic hexagon and rssr δ~ =⋅ tt

 

for 
1,2,3=sr, . Rather simple manipulations yield to   
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where the single dot and the double dot denote single and double contraction of matrices, respectively. Denote by 1  
and by ∈

 
the unit 22 ×  matrix and the Ricci 22 ×  matrix, respectively. It can be proved that   
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As an important remark note that since baab ss −=
 

for any nba ,...,1, = , we have 01111 =−== sss
 

and hence 
for n=1 equations (7) are isotropic. That is why we restrict considerations to the case in which 1=n  i.e. in which 
only three shape functions are taken into account. These shape functions are generated by a certain basic shape 
function ),( zxg  by conditions  ),(),( zxgzxg =1 , ),(),( zQxgzxg =2 , ),(),( zxQgzxg 2

3 = . In this case model 
equations (9) can be rewritten in the form 
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The above model equations are starting point for the subsequent considerations. 
 
 
 
 
 
 



FLUCTUATION AMLITUDE DECOMPOSITION 

Now, we are to decompose fluctuation amplitude v onto the sum of two terms 

10 vvv +=         (11) 
and hence the first from tolerance model equations (10) can be rewritten in the form  

10
2 ::)( vBvB ∇−∇−〉〈=〉∂〈+〉∇〈⋅∇ fuauA                         (12) 

The first term, denoted by  ),(0 zxv , should be identified with the whole family of integrals of ordinary differential 
equation  
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2 }{ =−∂ vAvD                  (13) 

which will be referred to as a boundary layer equation. For an arbitrary quadratic matrix X  denote by 
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XX  the exponential of matrix X , cf. [8], and, in the case in which matrix X  is positive definite, by 

X  unique positive definite quadratic matrix satisfying condition XX =
2

, [9]. It is easy to verify that 

boundary layer equation (13) has a solution 2
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0 ccv ADAD −−− += xx ee , where 2
21, R∈cc  are arbitrary 

vectors. Let us assume boundary conditions in the form  
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These boundary conditions yield  
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Finally the solution to boundary layer equation (13) for boundary conditions (14) is given by 

3

}{12

}{1

}{12

3
12

}{1

12

}{12

}{1

0

}{1

00

1,1

1

11

x
H

x
H

e
e

e

e

e
e

e

e

e

H

H

H

H

H

H

H

AD

AD

qq

qqv

AD

AD

AD

AD

AD

AD

AD

−

−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+

−
−+

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−

−
=

−

−

−

−

−

−

−

             (17) 

The second term, denoted by ),(1 zxv , should be a certain special solution to the ordinary differential equation  
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This solution will be investigated in the form  
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In which ),( 31 xxc  and ),( 32 xxc  should be determined from  
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It is the well-known fact that, under the Liouville lemma, the Wroński matrix taken as the basic matrix for the above 
equation, is invertible and hence (20) has unique solution  
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Hence  
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and finally solution to the ordinary differential equation (13) for boundary conditions (14) is given by  
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where )(2
1}{sinh }{}{1 11 zz eez ADADAD

−− −− −= . 

Now we are to introduce the concepts of the residual operator and the effective operator denoted by ][],[ ⋅⋅ effAR , 
respectively, which are defined by 

),]([:),)((),]([

),()}{(sinh}{),]([

333

213

0

1

3

xxuxxuxxu

dzzxuz
xz
zzxxu

TeffA

R

∇∇−〉∇〈⋅∇=

∇
=
==∇ −−

∫
BBA

ADAD

R
                        (24) 

Under the above denotations we have 
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and equation (13) can be rewritten in the form independent on the fluctuation amplitudes  

0
2 ][:][ vfB ∇−∇−〉〈=〉∂〈+ RfuaueffA                 (26) 

where 0v  is the solution of boundary layer equation given by (17). In the special case in which solution 0v  to the 

boundary layer equation (13) vanish (for example if boundary conditions (14) are homogeneous, 0qq == H0 ) 

and  0f = , equation (26) takes the simpler form 
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Bearing in mind that temperature perturbations imposed by the on the boundaries 0=z

 

and Hz =  are muffled in 
the points placed not close to the boundary of the region occupied by the composite it must be supposed that in 
many points of Ω the approximation off effective operator ][⋅effA

 

based on the integral mean value property can be 
applied: 
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where 0z

 

is an arbitrary point taken from interval ),( H0 . Bearing in mind that 
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Hence, under denotation   
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equation (27) take the form  
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A conclusion that averaged temperature field u  should satisfy equation (26) is a basic result of this paper.  

FINAL REMARKS  

At the end of the paper we are to resume the basic results of the paper in the form of the collecting of just obtained 
formulas to the following alternative system of tolerance model equations 
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which consists of the single equation (26) for the averaged temperature u  and formula (17) including as a first term 
the solution to the boundary layer equation (13). It must be emphasized that the averaged temperature field depends 
on the boundary layer phenomena by the additional source term equal to 0v∇− . This term vanish provided that 
boundary conditions (14) are independent on Ξ∈x .  

As a special remark we shall pointed out that in most applications of the tolerance modeling technique we deal with 
exclusively one shape function, cf. [10,11,12,13,14] and hence applied in this paper reducing of tolerance model 
equations to the case with one fluctuation amplitude should be treated as a very important property of the described 
physical situation. However, mentioned above papers deal non-stationary cases of heat conduction problems or 
dynamic problems in elasticity. In this cases described in the paper reducing of tolerance model equations to the 
single equation for the averaged temperature field seems to be also possible to realization. It will be explained in the 
separate paper. 
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