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ABSTRACT 
 

This paper extends the applicability of a new stress analysis method to the accurate determination of the detailed stress 
distributions in laminated plates in clamp region. The theoretical model presented here incorporates laminate deformations which 
account for the effects of transverse shear deformation, transverse normal strain-stress and a nonlinear variation of in-plane 
displacements with respect to the thickness coordinate. Thus, this model includes the warping of transverse cross-sections more 
accurately and eliminates the need of shear correction coefficients. Two numerical examples are discussed: the bending of 
elastically clamped beam and dynamic bending of centrally supported beam.  
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INTRODUCTION 
The deformation of composite beams and plates is often described by means of some simplified models. A 
variational technique is commonly used to derive the basic equations governing the vibrations of the sandwich 
structures. Reference is often made to the Timoshenko [6,9,15] models.  

A more general description of the bending of composite beams is given in [10]. In this model, the laminates are 
again described as thin plates. However, the general wave equation is used to describe the displacement in the core. 
The influence of boundary conditions is not discussed. A considerable computational effort is required. In [12] 
simple differential equations governing the apparent bending of sandwich panels are derived. The model includes 
shear effects. Compared with measured results, this model overestimates the shear effects. In particular, in the high 
frequency region, the predicted bending stiffness is too low. A modified Mindlin plate theory was suggested in [7]. 
The influence of some boundary conditions is also discussed in a subsequent paper [11]. Again a considerable 
computational effort is required. In [8] the Timoshenko beam equations are used to describe flexural vibrations of 
sandwich structures. In particular, variations of the shear coefficient are discussed for obtaining satisfactory results.  



For many of those references, there is common that the derived governing differential equations are of the 4th order. 
Due to the frequency dependence of sandwich, the solutions with four unknowns will agree for low frequency very 
well. With increasing frequency, the result normally strongly disagrees with measured vibrations. 

The main work on sandwich structures has been made on conventional foam-core structures with various face 
sheets. Little work has been done on the dynamics of honeycomb panels. In [13], there is presented an article, 
treating how to identify the dynamic parameters for aluminum honeycomb panels using orthotropic Timoshenko 
beam theory. The Authors had used a 4th order differential equation and determined the dynamic parameters 
comparing their theories to frequency response measurements. A 3-D theory presented in [1] is proposed for the 
calculation of the natural frequencies of laminated rectangular plates. The paper also includes a long reference list, 
each reference being classified according to the method being used.  

Certainly, there is available a large number of methods which describe the vibration of composite panels. However, 
the aim of this work is the formulation of simple but sufficiently accurate equations governing the apparent 
boundary conditions for deformation of sandwich beams and plates. Boundary conditions and apparent discrete 
scheme for clamp constructions should also be formulated for the calculation of eigen-frequencies. The models 
should allow simple parameter studies for the optimization of the structures with respect to their vibration 
performance. The aim is also to describe a simple measurement technique for determining some of the material 
parameters of composite beams. 

CLASSICAL BOUNDARY CONDITIONS FOR EULER BEAM 

The beam must satisfy certain boundary conditions at each end. Boundary conditions for Euler beam such as simply 
supported, clamped and free can be defined by means of [6,9,15]. For each boundary condition, certain requirements 

for the displacement w  and the angular displacement 
x
w

∂
∂  as well as forces and bending moments must be 

considered.  
 

 
 

Simply supported boundary Clamped boundary Free boundary 

Fig. 1. Boundary conditions 
 

The natural frequencies for a clamped and a free beam are identical, according to the Euler theory. However, when 
shear is considered, there is a difference between the natural frequencies for these two conditions. The natural 
frequencies for the clamped boundaries are the lowest. This is due to the fact that shear in the beam is induced by the 
clamped boundaries to a larger extend as compared to the case with free boundaries. The apparent bending stiffness 
for the clamped beam is therefore somewhat lower than for the beam with free ends.  

REFINED CLAMP CONDITIONS. BENDING OF PLATE WITH ELASTIC 
CLAMPED BOUNDARY CONDITIONS 

Let us consider the cylindrical bending of a plate in elastic joint [2,4,5]. The material of the plate is assumed to be 
more rigid than that of the interlayer (Fig. 2). The material of the plate is assumed to be anisotropic, with elasticity 
modulus xxC , xzC , zzC  and xzG . The material of the interlayer is assumed to be isotropic and incompressible 
(rubber-like material). Such a joint is widely used in industry and in laboratory experiments. The equilibrium 
equations are derived on the basis of the kinematics hypothesis:  

         1−⋅⋅= ji
ij zxuu ,  and  1−⋅⋅= ji

ij zxww  ,               (1) 

 
 
 
 



 
Fig. 2. Clamped plate scheme 

 

By substitution of Eq.(1) into the Eq.(2)  
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                         (2) 

we obtain the set of the linear algebraic equations on iju  and ijw .Here ±±
uKK ,  are the normal and tangential 

elastic coefficients of the elastic interlayer, respectively − such as these used in the Winkler foundation (in the most 
simple case ±±=±±±=± HGuKHEK /,/ , ±E , ±G   are  interlayer’s Young and shear modules, ±H are its 
depths. N(z), T(z) are external tangential and normal forces on the right end of the beam. In more detailed analysis 

±±
uKK ,  may be found by the same method [11,12,13]. 

In Fig. 3, 4 some numerical results are presented for a plate elastically clamped to point 0.5=TL . 

a)  
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Fig. 3. Normal stress Ezz /σ  for a distinct anisotropy level ((a) – 4.0/ =GE ; (b) – 1.0/ =GE ) 

 
Fig. 4. Tangential stress Exz /τ  for a distinct anisotropy level ((a) – 4.0/ =GE ; (b) – 1.0/ =GE ) 
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For a good result 4 terms are needed for convergence in the normal direction and more than 13 in the tangential  
( 4,13 ≥> ji  in Eq.(1)). The result is incorrect, if we reduce the value j of the term in the normal direction to 1 or 2 
(see [3]). The error is about 50%.  

In Figs. 5a and 5b the slopes of beam near to clamp are shown. The Fig. 5a concerns an anisotropic beam and 
varying relationships, xz CC / . The Fig. 5b concerns a three-layer beam with the inner layer of thickness H2 and 
face layers of the thickness H1, each layer has various mechanical properties. 

(a) 

 
 

(b) 

 
Fig. 5. (a) – the angles f of beam deflection near to clamp ( EK /  – clamp rigidity to Young modulus ratio, zzxx CC /=ν ); 

(b) – the angles of three-layer beam deflection near to clamp ( 21 / xxxx CC=υ – outer layer to inner layer rigidity ratio for 

beam with layers thickness ratio, 2.021 =HH ) 
 

In Fig. 5, there is visible that by absolutely rigid clamp the slope of beam is not equal to zero.  
For Euler beam clamp we can write 
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where ΣK  – integral rigidity, eK – rigidity of rigidly clamped Euler beam ( sL  – beam length, EI  – beam bending 
rigidity), cK  – clamp  rigidity.  

DISCRETE-CONTINUUM SCHEME OF BEAM CLAMP 

In Fig. 6 the discrete-continuum scheme of beam – shaker system is shown 
 

 
 

Fig. 6. Mechanical scheme for vibration measurements of sandwich beam 

In the experiment the beam was excited with white noise by a shaker mounted at the middle. The experimental 
Bruel&Kjaer PULSE system analyzes the signals using dual FFT.  



THEORETICAL-EXPERIMENTAL COMPARISON 

The range of numerical experiments must be done to be sure that our theoretical approach is correct. Let us consider 
now the vibration testing of a beam made of a foam material. Geometrical parameters are: length of beam 

20.060.0 −=L M; Width of beam 0127.0=H M. Elastic moduli are: 250/ =zzxx CC MPa, 58=G MPa, 
40=xzC MPa. The FRF for this beams are presented in Figs. 7, 8. The discrete-continual numerical scheme based 

on Fig. 2 is applied. In [3], elastic constants of laminates were determined by using an identification procedure 
based on experiment design, and multi-level theoretical approach. Results of identification for beam made of foam 
material are presented in Fig. 7. The FRF for this beams in the middle frequency range are presented in Fig. 8 .  

Here m
kf 2

1 2
1

π=  – the eigen-frequency of mass m  on spring 2k  . In Fig. 8 only small influence of this value on 

high frequency vibration can be seen. By the dot vertical lines the Euler beam eigen-frequency are presented. 

DISCUSSION 
The order of approximation must be higher than 3 – for the normal displacement w  and for the plane displacement 
u . If the frequency is higher, or the plate is not simply supported but clamped (as usually is in practice), or it has 
stiffeners or holes, then more convenient theories must be developed. The simple examples given in this paper show 
that the theories based on assumptions of a lower order approximation are unsatisfactory also in the case of a 
simply-supported plate. For the each case under investigation it must be decided which theory is most satisfactory. 
Each theory has its own limitations. It is well known that the exact solutions of elasticity theories are singular near 
the corners of a plate. Thus, the oscillation solutions found, for example in [14] by ABAQUS, are obviously not 
physically convenient to use in the cases studied herein.  

 

 
Fig. 7. Results of identification for beam made of foam material 

 
 

Fig. 8. Resulting FRF for beam in the middle frequency range 



CONCLUSIONS 
In this paper various displacement models have been developed by considering combinations of displacement fields 
for in-plane and transverse displacements inside a mathematical sub-layer. The developed numerical method follows 
a semi-analytical approach with the analytical field assumed in the longitudinal direction and a layer-wise 
displacement field assumed in the transverse direction. The present work aims at developing a simple numerical 
technique, which can produce very accurate results in comparison with the available analytical solutions and also 
[can help?] to decide about the level of refinement in higher order theory that is needed for accurate and efficient 
analysis of clamped plates. 

REFERENCES 
1. Chao, C. C., Chern, Y. C., 2000. Comparison of natural frequencies of laminates by 3-D theory, Journal of Sound and 

Vibration, 230(5), 985–1007. 
2. Diveiev B., 1994. Block-variational modeling of complicated structures with vibration excitation, 1. Some numerical 

approach for the composite made joints, AS Ukraine, Center of Mathematical Modeling, Inst. of Applied Problem of 
Mechanic and Mathematic, 94(5), 1-67. 

3. Diveyev, B., Crocker, M. J., 2006. Dynamic properties and damping prediction for laminated plates, Proceeding of 
International Conference on Noise and Vibration Engineering (ISMA-2006), Katholieke Universiteit Leuven, Belgium, 
1021–1028. 

4. Diveiev B., Lampika R.V., Nykolyshyn М.М., 2000. Calculation of the strength condition of junctions of the thin-walled 
elements connected by an elastic interlayer, Mathematical Methods and Phys.-Mech. Fields,  43(4), 135–139. 

5. Diveyev, B. M. Nykolyshyn, M. M., 2001. Refined numerical schemes for a stressed-strained state of structural joints of 
layered elements, Journal of Mathematical Sciences, 107, 3666-3670.  

6. Huang, T. C., 1961. The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of 
uniform beams with simple end conditions, Journal of Applied Mechanics, Transactions of the ASME, 72, 460–473.  

7. Liew, K. M., 1996. Solving the vibration of thick symmetric laminates by Reissner-Mindlin plate theory and P-Ritz method, 
Journal of Sound and Vibration, 198(3), 343–360. 

8. Matheri, M. R. Adams, R. D., 1998. On the flexural vibration of Timoshenko beams and applicability of the analysis to a 
sandwich configuration, Journal of Sound and Vibration, 209(3), 419–442. 

9. Mindlin, R. D., Deresiewicz, H., 1955. Timoshenko’s shear coefficient for flexural vibrations of beams, Proceedings of the 
1st U.S. National Congress on Applied Mechanics, 171–178.  

10. Nilsson, C., 1990. Wave propagation in and sound transmission through sandwich plates, Journal of Sound and Vibration, 
138(1), 73–94.  

11. Xiang, Y. Liew, K. M., Kitipornachai, A., 1997. Vibration analysis of rectangular Mindlin plates resting on elastic edge 
supports, Journal of Sound and Vibration, 204(1), 1–16.  

12. Renji, K., Nair, P. S., Narayanan, S., 1996. Modal density of composite honeycomb sandwich panels,  Journal of Sound and 
Vibration, 195(5), 687–699. 

13. Saito T., 1997. Parameter identification for aluminum honeycomb sandwich panels based on orthotropic Timoshenko beam 
theory, Journal of Sound and Vibration, 208(2), 271–287. 

14. Song-Jeng H., 2003. An analytical method for calculating the stress and strain in adhesive layers in sandwich beams, 
Composite Structures, 60, 105–114. 

15. Timoshenko, S., 1955. Vibration Problems in Engineering, Macmillan Company, Ltd., London.  
 

 
Bohdan Diveyev, Nazar Kernytskyy, Jurij Vybranec 
Lviv National Polytechnic University,  
Mechanical Department, 
12 St. Bandera St.,  
79-013, Lviv, Ukraine 
Tel. 380 (0322) 58-26-86,  
e-mail: divboglviv@yahoo.com 
 
Ivan Kernytskyy 
Warsaw University of Life Sciences –SGGW, Faculty of Engineering and Environmental Science, 
161 Nowoursynowska St., 
02-787, Warsaw, Poland 
e-mail: ivankernytskyy@ukr.net 
 
Ihor Butyter 
Pidstryhach Institute for Applied Problem of Mechanics and Mathematic, NASU,  
15 D. Dudayeva St.,  
79-005, Lviv, Ukraine 
 
 
Accepted for print: 21.03.2009 


