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APPROXIMATION OF THE CONTINUOUS RELAXATION
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USING LAGUERRE FUNCTIONS
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ABSTRACT

Relaxation spectrum is a very useful tool in the characterization of viscoelactic materials as the knowledge on them enables the
calculation of any linear material functions such as the creep compliance, the Poisson’s ratio or shear and bulk modulus. The
paper deals with the problem of recovery of continuous relaxation spectrum from discrete-time noise corrupted measurements of
relaxation modulus obtained in stress relaxation test. An optimal orthogonal scheme of the least-squares approximation of the
spectrum of relaxation frequencies by the finite series of Laguerre functions is presented. The approach proposed allows us to
reduce the primary infinite dimensional dynamic optimization problem to a static linear-quadratic programming task. The
problem of relaxation spectrum identification is the practical ill-posed problem of reconstructing solution of Fredholm integral
equation of the first kind from the measured data. Thus, Tikhonov regularization is used to guarantee the stability of the scheme.
Generalized cross validation (GCV) is adopted for the optimal choice of the regularization parameter. The numerical realization
of the scheme by using the singular value decomposition (SVD) is discussed and the resulting computer algorithm is outlined. An
analysis of the model accuracy is conducted for noise measurements and the linear convergence of the approximations generated
by the scheme is proved. It is also indicated that the accuracy of the spectrum approximation depends both on measurement
noises and regularization parameter as well as on the proper selection of the basic orthogonal functions. The method combines
effectiveness and accuracy and is general enough to cover both viscoelastic solids and liquids. Applying the scheme proposed,
the relaxation spectrum of an unconfined cylindrical specimen of the beet sugar root is determined.
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                      functions



INTRODUCTION

Over the last 30 years many advances have been made in the mathematical modelling of the soft biological materials
as fruits and vegetables. The need for detailed knowledge of mechanical material functions has been growing with
the increased use of accurate engineering methods for rigorous predictions of the plant materials behaviour, such as
the finite element method (FEM), the boundary element method (BEM) and the finite difference method [11,13].
Fruits and vegetables are most often modelled in a viscoelastic regime, which is good for characterizing strain-stress
dependence, creep and stress relaxation within a small deformation [9,15]. A number of constitutive methods have
been developed to describe the time dependent mechanical behaviour of biological materials, e.g. [4,7,9,15,16].
Although for viscoelastic materials, a multiplicity of constitutive theories exists, essentially, only linear
viscoelasticity is considered for which the correspondence principle applies. The mechanical properties of linear
viscoelastic materials are characterized by relaxation or retardation spectra. From the relaxation spectrum other
material functions such as the relaxation modulus or the creep compliance can be calculated without difficulty, and
next the time-variable bulk or shear modulus or the time-variable Poisson’s ratio can be determined using the
identification schemes proposed e.g. in [3,4,16]. The relaxation spectrum can be also used to validate experiments
by cross-checking results, e.g., from creep and stress relaxation tests [21]. Thus, the relaxation spectrum is vital not
only for constitutive models but also for the insight into the properties of a viscoelastic material.
However, the two spectra are not measurable directly; they must be determined from the appropriate response
function, measured either in time or frequency-domain. These calculations require solution of an inverse problem,
which happens to be ill-posed. It is one of the classical problems in rheology. Although the literature concerned with
the development and investigation of different algorithms for the relaxation spectrum computation using the data
from a small-amplitude oscillatory shear experiment is quite extensive, e.g. [2,12,14,21,24] and papers cited therein,
there are only few papers, e.g. [4,18,19,20, 22], dealing with the spectrum determination from relaxation modulus
data.
The oscillatory-experiment methods are not appropriate for highly hydrated plant materials (fruits and vegetables).
A classical manner of studying viscoelasticity for such materials is by two-phase stress relaxation test, where the
time-dependent shear stress is studied for step increase in strain [9,15]. Therefore, a computationally efficient
methods to determine the relaxation spectrum which can be applied to time-measurements of relaxation modulus
obtained in stress relaxation test is desirable and it is the purpose of this study.
In this paper an optimal orthogonal scheme of the least-squares approximation of the spectrum of relaxation
frequencies by the linear combination of Laguerre orthonormal functions is proposed. Regularization is introduced
for computing the model parameters and implemented by both the singular value decomposition as well as the
generalized cross-validation technique.

MATERIALS AND METHODS

Relaxation spectrum
The uniaxial, nonaging and isothermal stress-strain equation for a linear viscoelastic material can be represented by
a Boltzmann superposition integral [1]
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where ( )tσ  and ( )tε  denotes the stress and stain, respectively, and ( )tG  is the linear relaxation modulus.
Modulus ( )tG  is given by
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where ( )vH  characterises the distribution of relaxation frequencies in the range [ ]ννν d, + . The relaxation
spectrum ( )vH  is a generalisation of discrete Maxwell spectrum to a continuous function of the relaxation
frequencies v .
The problem of relaxation spectrum determination is the practical problem of reconstructing solution of Fredholm
integral equation of the first kind (1) of convolution type from time-measured data. This problem is known to be
severely Hadamard ill-posed [23]. In particular, small changes in measured relaxation modulus can lead to
arbitrarily large changes in the relaxation spectrum. In remedy, some reduction of the admissible solutions set or
respective regularization of the original problem can be used. We use both the techniques simultaneously. A finite-
dimentional approximation of the spectrum by the linear combination of orthogonal Laguerre functions and
Tikhonov regularization method will be used.



Model

Assume that ( ) ( )∞∈ ,LH 02ν , where ( )∞,L 02  is the space of real-valued square-integrable functions on the
interval ( )∞,0 . Let ( )νkL , Zk ∈ , the set of integers, be the Laguerre functions defined by the Rodrigues
differential formula
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where a scaling factor 0>α . The functions ( ){ }νkL  form an orthonormal basis of the space ( )∞,L 02 . The
orthogonality property allows us to express the relaxation spectrum as
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where kg  are constants. For practical reasons, it is convenient to replace the infinite summation in the above
equation with a finite one of K  terms
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Then the respective model of the relaxation modulus is described by
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where by the well-known Laplace transform of the Laguerre functions we have
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Identification problem
Identification consists of selecting within the given class of models defined by (3)-(4) such a model which ensures
the best fit to the measurement results. Suppose, a certain identification experiment (stress relaxation test) performed
on the specimen of the material under investigation resulted in a set of measurements of the relaxation modulus

( ) ( ) ( )iii tztGtG +=  at the sampling instants 0≥it , ,N,i K1= , where ( )itz  is additive measurement noise.
As a measure of the model (3)-(4) accuracy the square index is taken
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where 2⋅  denotes the quadratic norm in the real euclidean N-space NR  (as well as in the space KR  in the

sequel), [ ]TKK gg 10g −= K  is an K-element vector of unknown coefficients of the model (3), the matrix

KN,Φ  and the vector NG  are defined as follows
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Then, the identification problem consists of determining the model parameter Kg  minimizing the index (5).
The matrix N,KΦ  is usually ill-conditioned or of deficient rank. Then, the minimum of (5) is not unique and even

the normal (minimum norm) solution N
Kg  of the linear-quadratic problem (5)-(6) is non-continuous and unbounded



function of the data vector NG , i.e. when the data are noisy even small changes in NG  would lead to arbitrarily

large artefact in N
Kg . Therefore, the numerical solution of finite dimensional problem (5)-(6) is fraught with the

same difficulties that the original continuous ill-posed problem. To deal with the ill-posedness, the Tikhonov
regularization method is used and presented in the subsequent section.

Regularization
Regularization aims to replace the ill-posed problem by a nearby well-posed problem. Tikhonov regularization [23]
strives to stabilize the computation of the minimum norm least-squares solution by minimizing a modified square
functional of the form
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where 0>λ  is a regularization parameter. The above problem is well-posed, that is the solution always exists, is

unique, and continuously depends on both the matrix N,KΦ  as well as on the measurement data NG . Minimizing
(7) the optimal vector is given by
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where superscript “T” indicates transpose and K,KI  is KK ×  identity matrix.

The choice of regularization parameter λ  is crucial to identify the best model parameters. There exist different ways
of suitable choosing the regularization parameter [2, 8]. They differ in the amount of a priori information required
as well as in the decision criteria. Here we employ the generalized cross-validation of Golub, Heath and Wahba [6],
which does not depend on a priori knowledge about the noise variance. The GCV technique relies on choosing as
regularization parameter that λ̂  which minimizes the GCV functional defined by
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and ( ) ( ) λΦλλ KN,KNN gGGMr −==  is the residual vector for the regularized solution (8), ( )[ ]λMtr  denotes the

trace of ( )λM .

Algebraic background
For the computational purposes the elegant formula (8) is generally unsuitable. For numerical computation of
regularized solution, the singular value decomposition technique will be used.
Let SVD of the matrix N,KΦ  take the form [5]

T
N,K VU ΣΦ = (10)

where V  is orthogonal matrix (i.e., the columns of V  are orthonormal) of order KK × , U  is NN ×  orthogonal
matrix and ( )001 ,,,,,diag r KK σσΣ =  is KN ×  diagonal matrix containing the non-zero singular values

r,, σσ K1  of the matrix N,KΦ  with ( )N,Kankr Φr= . Taking advantage of the diagonal structure of ΣΣ T  and the
matrices V  and U  orthogonality, it may be simply proved that
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Using SVD (10) of N,KΦ  the GCV function can be expressed by a convenient analytical formula [19]
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as a function of the singular values r,, σσ K1  and the elements of the wektor N
T GUY = . It is easy to check that

( ) 00 <λddV , and whence the optimal parameter 0>λ̂ . The GCV function (13) is differentiable for any λ ,
thus an arbitrary gradient optimization method can be implemented to solve the GCV minimization task.

RESULTS AND DISCUSSION

Analysis

The purpose of the regularization relies on stabilization of the resulting vector λ
Kg . The effectiveness of this approach

can be evaluated by the following relations which follow immediately from Proposition 1 in [18]
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where ( ) ( )[ ]TNN tztzz K1=  and N
Kg is the normal solution of the linear-quadratic task (5)-(6) for noise-free

measurement data. The first equality in (14) illustrates the mechanism of stabilization. The following rule holds: the
greater the regularization parameter λ  is, the fluctuations of the vector λ

Kg  are highly bounded. Thus, the
regularization parameter controls the “smoothness” of the regularized solution.
By orthonormality of the basic functions ( ){ }νkL  in the space ( )∞,L 02 , for an arbitrary ( )νKH  of the form (2) the
following equality holds
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where 2⋅  means the (square) norm in ( )∞,L 02 . Therefore, the smoothness of the discrete problem (7) optimal
solution guarantees that the fluctuations of the respective spectrum of relaxation, in particular the resulting spectrum
of relaxation
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are also bounded. In view of the above, the function ( )νKĤ  (16) is the approximation of the real spectrum ( )νH
in the class of functions (2) optimal in the sense of the square identification index (5) of the bounded norm

N
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1
.

Relaxation spectrum ( )νKĤ  (16) is only approximation of that spectrum, which can be obtained in the chosen
class of models (3)-(4) by direct minimization (without regularization) of the quality index (5) for noise-free
measurements of the relaxation modulus, i.e. the approximation of the function ( ) ( )∑ −
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into account the equality (15) the following bound of the approximation error can be derived (see Appendix)
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Therefore, the regularized vector λ̂
Kg  converges to the normal solution N

Kg , linearly with respect to the norm

2Nz , as 0→λ̂  and 02 →Nz , simultaneously. Likewise, the inequality in (17) guarantees that the spectrum

( )νKĤ  tends to ( )νN
KH  in each point ν , at which they are both continuous, as 0→λ̂  and 02 →Nz ,

simultaneously.
The inequality (17) yield that the accuracy of the spectrum approximation depends both on the measurement noises
and the regularization parameter as well as on the singular values r,, σσ K1  of the matrix (6), which, in turn,
depend on the proper selection of the basic orthogonal functions ( ) ( )ν10 −K,L,νL K .



Identification scheme
Allowing the above, the calculation of the relaxation model involves the following steps.

1. Perform the experiment – stress relaxation test [7,15] – and record the measurements ( )itG , ,N,i K1= ,
of the relaxation modulus at times 0≥it .

2. Compute the square matrix N,KΦ  (6), and next determine SVD (10) of N,KΦ .

3. Determine GCV function ( )λV  (13), and next compute the optimal regularization parameter

( )λλ Vminargˆ = .

4. Determine KK × – order inverse matrix (12) for λλ ˆ= .

5. Compute the regularized solution λ̂
Kg  according to the formula (11) for λλ ˆ= .

6. Determine the spectrum of relaxation frequencies ( )νKĤ  as a linear combination of Laguerre functions (16).

Remark 1: Only the SVD of the matrix N,KΦ  is space and time consuming task of the scheme. Efficient serial
algorithms for SVD are available nowadays, based on the method developed by Golub and Reinsch [5]. However, the
operations to perform SVD on a KN ×  matrix have the time complexity ( )2NKO , therefore of late block-based
SVD are developed, e.g. [10]. Note however, that in the scheme proposed, the SVD must be computed only once.

Remark 2: For the scaling factor in the Laguerre functions α  the following rule holds: the low the parameter α  is,
the shorter the relaxation times are, i.e. the greater are the relaxation frequencies.

Remark 3: By the optimal choice of the scaling factor, the best fit of the model to the experimental data can be
achieved. In such a case, a two-level hierarchical identification scheme – compare [17] – can be used, in which on
the first lower level for a given value of α  the above procedure is realized and on the second upper level the
optimal parameter α  is computed by minimizing the original model quality index ( )KN gQ . However, in practice a
simple rough rule for choosing the scaling factor α , based on the comparison of a few first functions from the
sequence ( ){ }tkφ  for different values of α  with the experimentally obtained function ( )tG  is quite enough. In the
same manner, the number K  of the series (3) elements can be initially evaluated. Thus, the choice both of the
number K  as well as the parameter α  must be done a posteriori, after the preliminary experiment data analysis.

Example
A cylindrical sample of 20 mm diameter and height was obtained from the root of sugar beet Oktawia variety. The
sample was tested on the universal testing machine INSTRON 6022. During the two-phase stress relaxation test, in
the first initial phase the strain was imposed instantaneously, the sample was preconditioned at the 0.833 mm·s-1

strain rate to the maximum strain. Next, during the second phase at constant strain the corresponding force induced
in the specimen, which decreases with time, was recorded during the time period [0,120] seconds. The experiment
was performed in the state of uniaxial stress, i.e. the specimen examined underwent deformation between two
parallel plates. The respective relaxation modulus was computed as the ratio of the stress to the strain imposed and
plotted in Fig. 1. Next the proposed identification scheme was applied.

Fig. 1. Relaxation modulus ( )itG  corrupted by additive noise (points) and the optimal mathematical model ( )tĜK

(solid line)



Since the relaxation modulus was recorded only over 120 s a constant value known as the long-term modulus EG  is
introduces in the classical integral model (1), i.e. the modified model of the form

( ) ( ) E
tv GdvevHtG += −
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is used to guarantee the better fit of the experiment data. It is easy to check that for the above model the matrix
KN,Φ  and the vector Kg  must be defined as
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The optimal regularization parameter is 564 E-.ˆ =λ . The norm of the regularized vector, i.e. according to equation

(15), the norm of the “smoothed” spectrum is equal 6979
1
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optimal identification index is 08850.Q̂N = , thus the model (3)-(4) fitted the data extremely well, as indicated

especially by the mean-square model error 0003690.NQ̂N = . The optimal model of the relaxation modulus

given, taking account of (3), by ( ) ( )∑ −
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0
K
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kK tgtĜ φλ  is plotted in Fig. 1 and the resulting relaxation spectrum

is plotted in Fig. 2.

Fig. 2. Relaxation spectrum ( )vĤK  versus frequency v

CONCLUSIONS

A robust algorithm has been found for the calculation of relaxation frequencies from the measurement data of the
linear relaxation modulus discrete-time measurements. The approach proposed is based on the approximation of the
spectrum by finite linear combination of the basic Laguerre functions. As a result, the primary infinite dimensional
dynamic optimization problem of the continuous relaxation spectrum identification is reduced to the static linear-
quadratic programming task. Tihonov regularization and generalized cross validation are used to solve it, thus the
stability of the resulting scheme is guaranteed.
The choice of the orthogonal basic functions guarantees that smoothing of the regularized solution of the linear-
quadratic problem ensures smoothing of the resulting relaxation spectrum model. Due to the choice of the Laguerre
basic functions, for which the integrals (4) are given by the simple analytical formula, the errors of the approximate
quadrature rules required in other known methods, see e.g. [14], are avoided. The above is of great importance in the
context of ill-posed inverse problem.
An analysis of the model accuracy is conducted both in the case of perfect (noise-free) and corrupted by additive
noise measurements of the linear relaxation modulus and the linear convergence of the approximations generated by
the scheme is proved. The choice of the scaling factor in order to achieve a good fit of the model to the experiment
data is discussed. The numerical experimental studies suggest that the scheme proposed can be successfully used
within a satisfactory range of both viscoelastic solids and liquids.



APPENDIX

It is well-known that the normal solution of the linear-quadratic task (5)-(6) NΝ,K
N
K Gg †Φ=  and that †

Ν,KΦ , the

Moore-Penrose inverse of Ν,KΦ , can be expressed using SVD (10) as T
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since, according to the Schwarz inequality using the orthonormality of the vectors iu , we have
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