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ABSTRACT

One of the problems occurring in the classical methods of geoid and quasi-geoid altitude determination, which lower their
accuracy, is the necessity to implement various corrections to the input data. The other important issue in a precise geoid
determination is the recognition of topographical masses density distribution. Its variations are significant and could reach one
centimeter - even for a slightly folded terrain. The paper suggests the method for the quasi-geoid altitude modeling on the basis of
non-reduced surface gravity data and heights anomalies of the GPS/leveling. The method depends on generating a disturbing
potential model whose component is the topographical masses density distribution model.
The paper presents preliminary examination results performed in the test area located in Lower Silesia, SW Poland. The achieved
precision of calculated quasi-geoid heights is about ±1.7 cm in the meaning of a mean square error. Attained precision of the
model is close to the accuracy of a test, GPS/leveling data. Good results were obtained within the range of about 20 km from the
border of the area covering a gravity data. It confirms that the proposed solution could be used in case of lack of the gravity data
on large regions outside the examined area. The designated model of topographic masses density confirms that such solution
allows to interpolate height anomalies and model topographic masses density at the same time.
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INTRODUCTION

There are many ways of geoid and quasi-geoid determination. A general overview of these methods may be found in
[8,9,19,29,33]. Principally, there are two common groups of methods to mention [29]: least-squares approximation
(with least-squares collocation as the most popular) and the methods based on the Stokes integral.

Taking into account the data set used in a calculation process, it should be noticed that Stokes integration methods
are generally based on gravity anomaly data. Approximation methods can use mixed data types like gravity
gradients, GPS/leveling data, gravity anomalies and disturbances [31]. If we consider data quantity, we realize that
the base of precise calculations for both groups are gravity data. Gravimetric geoid or quasi-geoid have systematic
offset and tilt in reference to GPS/leveling data, caused by the long-wavelength errors of geoid or quasi-geoid and
systematic errors of both leveling and GPS data [31]. Consequently, in order to be applicable in satellite leveling in a
national height system, such kind of geoid or quasi-geoid should be adjusted to GPS/leveling data. Hence, the data
set commonly used in calculation process should be completed by GPS/leveling data.

Making calculations according to the above mentioned classical solutions is difficult which is noticeable especially
in the case of the mountainous areas, if the purpose of these calculations is to determine the geoid or quasi geoid
model with the accuracy of 1cm. These difficulties result mainly from the necessity of implementing certain
reductions and corrections to the input data (mainly topographic correction) that follow detailed solutions of this
method. These corrections as well some approximations that occur in classical solutions were the subject of many
analyses and comparisons. They were discussed in the recently published papers: [1,11,17,18,20,21,22,23,24,25,32].
These studies suggest that determining the geoid with 1 cm accuracy requires not only very precise data (gravimetric
data and digital terrain model) but also the modification of the present classical techniques for the geoid and quasi-
geoid determination or searching the new methods.

The other disturbing factor, which accompanies the task of geoid determination, is unacquaintance of topographic
masses density distribution. In practice the constant density is mostly used ( 3mkg2670.g.e ⋅=ρ ). However, a real
density can significantly differ from this constant value. These variations can implement errors into the reduced
gravity and the calculated geoid heights. Such problem was studied also in recent years [1,10,14,22]. Sjöberg [22]
pointed out that density variations could be in the range of centimeters for topographic elevations above 660 m. For
elevations of 1000m, 2000m and 5000m the effect could reach the values of ±22, ±8.8 and ±56.8 cm. This information
can be taken from all available sources like geological maps, seismic and borehole measurements, density rocks
Tables etc. [14]. Topographic masses density may be determined also on the basis of data used for the geoid or
quasi-geoid designation (gravimetric anomalies and GPS/levelling data). In this case, this data would be crucial in
the process of the Earth gravity field modelling both in geodetic and in the geophysical sense.

With reference to all these issues, the main purpose of this elaboration is suggesting the method for quasi-geoid
determination that minimizes problems connected with introducing corrections to the input data. This method
eliminates such problems because the input data is not reduced.  The suggested solution is based on a disturbing
potential model which includes the model of topographical masses density distribution. To some extent, it is the
solution of the second problem mentioned above, namely determination of topographic masses density.

Gravimetric data and heights anomalies determined from GPS measurements on points whose normal heights are
known, are the basis for calculations.

The proposed solution should be perceived as a kind of solution for gravimetric inverse problem. In relation to this,
the solution of the task as such may be found using techniques of gravity field inversion [4, 26, 27].

DISTURBING POTENTIAL MODEL

This section presents the suggested disturbing potential model and the way of estimating its parameters.
Let’s consider a point P situated on the terrain surface (Fig. 1). The disturbing potential in this point can be divided
into three components:
potential ΩT  produced by topographic masses Ω  laid above the geoid, with density distribution function ρ .

potential κT  produced by disturbing masses κ  occurring under the geoid surface with density distribution
function δ .
potential rT  which represents the remaining influences.



Fig. 1. Disturbing potential model

Potentials ΩT  and κT  produced by masses Ω  and κ  are defined by Newton’s integral and expressed respectively:
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where G is the Newton’s gravitational constant, ΩdV  and κdV  are elements of volume, r is the distance between
the attracting masses and the attracted point P.

Due to the fact that Ω  and κ  regions cover limited area of interest, the potential rT  contains influences of
disturbing masses which lay outside the regions, and are not included in two preceding components. Furthermore, its
role is to link the gravity and the GPS/leveling data, so it has to cover an offset and a tilt between gravimetric quasi-
geoid and GPS/leveling data. Both mentioned roles of the potential rT  can be considered as a long wavelength.
Hence, the potential can be represented for instance by harmonic spherical polynomials of a low degree.

Finally, the disturbing potential on the terrain surface can be written as:

κTTTT rP ++= Ω (3)

The synthetic form of disturbing potential (3) allows to formulate a gravity inversion task as the one that requires to:
find such functions of density distribution ρ  and δ  inside the defined regions Ω  and κ  to satisfy the equality of
the disturbing potential values given by equation (3) and its other quantities to their real values on survey points..

This task may be solved by making continuous volume functions ρ  and δ discrete. To do so, Ω  and κ  regions
have to be divided into finite volume blocks and the constant density has to be assigned to each of the blocks.
Densities of the blocks now become the searched values.

The division of the Ω region, basically may be defined by digital terrain model (DTM), if we assume the constant
density of topographic masses for the single block from the geoid to the terrain surface. Due to the fact that
determining the density for each DTM block separately, when the DTM resolution is high, would involve
determining the great amount of unknown values, it seems reasonable to group DTM blocks in the zones that have
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the same density. If such assumption was taken, the constant searching for density kρ would refer to all DTM
blocks situated in k zone.

The  κ region may be treated as the slab with the same thickness. The division into blocks at the constant density

jδ  would be the set consisting of one or many layers of spherical or rectangular prisms  - depending on the adopted
coordinate system.
Considering gravimetric data that are the basis of calculations, the influence of Ω  and κ  regions may be treated as
the topographic-isostatic correction. The borders of these regions may be described using guidelines that direct
calculation of topographic-isostatic reduction of the gravity data. Because the model (3) contains the component rT ,
so the analogy that facilitates finding the border of Ω  and κ regions is only a suggestion and can define maximum
range of these areas. So in the horizontal plane, these regions should go behind the border of data occurrence. It also
seems reasonable to take that the κ region thickness is approximately equal to the T - depth of the compensation
surface. Precise determination of these regions values certainly demands many calculation tests.
When Ω  and κ  regions are defined in such a way, the potential (3) may be described as  a linear function of the
searched parameters, which are kρ  and jδ densities, and as coefficients of the polynomial that approximates rT
potential.
If calculations are made in spherical coordinates, rT  potential  can be approximated with harmonic spherical
polynomials of a low degree, so we can generally write:

awT== ),,(),,( PPPPPPr RWRT λφλφ (4)
where

PPP R,,λφ  – spherical coordinates of the attracted point P,

],...,[ 1 laa=Ta  is the vector of polynomials coefficients ua  (u=1...l),

],...,[ 1 lww=Tw  comes from the form of taken polynomials.

Recording ΩT  potential requires geoid approximation by a sphere with the mean Earth’s radius bR . The component

ΩT  is determined on the strength of Ω  region defined as a rectangular spherical grid of DTM, where particular

block i is a spherical prism limited by spheres with a radius bR  - at the bottom and ibit HRR +=  - at the top.

ΩT  potential  can be written as:
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where
n – number of DTM zones (there will be calculated constant density kρ  for each zone),
mk – number of spherical prisms of DTM in zone k,

ibiibii HRR +,,,,, 2211 λφλφ  – spherical coordinates defining spherical prism i,

( )( )PiPiPii λλφφφφψ −+= coscoscossinsinarccos  – geocentric angle between the attracted point P and

the volume element iiiii dRddR φλφcos2 ,

],...,[ 1 nρρ=Tρ  is the vector of constant densities of topographic masses,

],...,[ 1 ntt=Tt  comes from (5) and values kt  (k=1…n) are defined as [25]:
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The κT  component may be written by defining the κ  region as the one layer of spherical prisms which are limited

by spheres with a radius TRb −  - at the bottom and bR  - at the top.
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where
s – number of spherical prisms of the κ  area,

bjjbjj RTR ,,,,, 2211 λφλφ −  – spherical coordinates defining spherical prism j,

],...,[ 1
T

sδδ=δ  is the vector of constant densities of the region κ ,

],...,[ 1
T

srr=r  comes from (7) and values  jr  (j=1…s) are defined as [25]:
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Considering equations (4), (5) and (7), potential (3) can be now written as follows:

δrρtaw TTT ++=PT (9)

Evaluation of the disturbing potential and its vertical derivative, according to equation (9) requires calculation of the
integrals (6) and (8) and its vertical derivatives. Because the non-closed form of these integrals has not been found
yet, a numerical integration is needed. To improve the effectiveness of calculations, not using the numerical methods
of integration, Cartesian coordinate system can be used where the solutions of integrals are known. The advantage of
implementing such coordinate system is the fact that the model is designed for local use, hence some
approximations are acceptable.

Let’s define the rectangular Cartesian coordinate system. Its Z-axis is directed towards the Zenith and the X, Y- axes
lay on the horizontal plane and are directed to the North and East. The origin of the coordinate system can be set in
the middle of the area. In this case Ω  and κ  regions are defined as a rectangular grid of rectangular prisms (Fig.2).

Fig. 2. Ω  and κ  regions in a Cartesian rectangular coordinate system

With Ω  and κ  regions defined in this way, the disturbing potential is still given by the equation (9) with some
quantities changed. Harmonic spherical polynomials can now be written in Cartesian coordinates as:

PPPPPPPP ZaYXaYaXaaZYXW 43210),,( ++++= (10)
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Coefficients tk and rj in equations (5) and (7) are now defined by integrals:
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where

PPP ZYX ,,  coordinates of point P,

212121 ,,,,, iiiiii zzyyxx  coordinates defining rectangular prism i of DTM,

212121 ,,,,, jjjjjj zzyyxx  coordinates defining rectangular prism j of κ  area.

Solutions of the integrals in equations (11) and (12) and their vertical (z) derivatives can be found in many
publications [7,16,25].
The disturbing potential model in the form (9), aimed at solving gravity inversion, can be easily used by applying
the least-square method. As it was mentioned in the introduction, unknown parameters can be calculated by using
different geodetic data, which stand functions of disturbing potential. For the purpose of its importance and
availability, the bases of calculations are height anomalies extracted from GPS/levelling measurements and a gravity
data. For this kind of data the observation equations will be formulated.

Height anomaly
Following the Bruns formula, a height anomaly can be expressed as a disturbing potential value [29]. Therefore, the
observation equation of height anomaly can be written as the observation equation of a disturbing potential.
Hence, we can write:

xf T=+ TPP vT (13)

where [ ] [ ]snlaa δδρρ ,...,,,...,,,..., 111
T == TTT δ,ρ,ax  is the unknown vector

[ ] [ ]snl rrttww ,...,,,...,,,..., 111
T == TTT r,t,wf  is the known vector

TPv  is an adjustment error.

Gravity data

Gravity anomaly Pg∆  is connected with disturbing potential by fundamental equation of physical geodesy [29]:
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where Qγ  is a normal gravity acceleration on telluroid and zzU  is its vertical gradient.

Based on this equation, considering disturbing potential model (9), we can write observation equation for the gravity
anomaly:
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where zf  is the Z derivative of the vector f .



To formulate the equation (15) two vectors should be calculated: zf  and f  for each point with measured gravity.

To improve calculation speed, quantity P
Q

zz TU
γ

 in the equation (14) for each point can be approximately calculated

from existing, less precise quasi-geoid models. Hence, instead of the gravity anomaly in the calculation process a
gravity disturbance can be taken. Observation equation for such gravity data will then have the form:

xfz
T−=+ gPP vg δδ (16)

At the origin of local Cartesian coordinate system the equation 
z
Tg
∂
∂−=δ  is certainly true. For distant points from

the origin of coordinate system, this equality will turn into approximation. To estimate an error of the
approximation, we have to assume that vectors g and γ  are directed to the centre of the sphere with radius
R=6371 km. For the point situated in the distance of 100 km from the origin of the coordinate system and with the
gravity disturbance of 50 mGal, the length of projection of the disturbance on the Z-axis will amount 49.994 mGal.
So, the approximation error is lower than the precision of the gravity measurement and, for a limited area, can be
neglected.
Inversion of the gravity data is usually accomplished by adopting a certain reference density model, which we
describe as [ ] [ ]00

1
00

1000 ,...,,,...,, sn
TTT δδρρ== δρτ . The searched values are not densities themselves but

differences between real, natural densities and the taken reference densities. Additionally, indicating the density
model as [ ] [ ]sn

TTT δδρρ ,...,,,...,, 11== δρτ , the searched differences can be written as 0ττdτ −=T , and

the vector of the unknown values as [ ]TTT dτadx ,= . The equations (13), (15) and (16) will be then written as:
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000 , τax = , where the vector 0a  is l-dimension zero vector .

The formulated equations (17), for the observations series may be written in a more convenient way as:

LAdxv −= (18)

where [ ],...,...,,..., gPgPTP
T vvv δ∆=v  is the adjustment errors vector,

[ ],...,...,,..., 000
PPPPPP

T ggggTT δδ −∆−∆−=L  is a known observation vector and A is design matrix of
known coefficients.

When the given weight matrix P, which was defined by the reciprocal of the observational errors squares, the system
of equations (18) can be solved by general condition of the least squares in the form:

min=PvvT (19)

We have to realize the estimated densities of topographic masses will not be correct. It is caused by the fact that the
base of modelling is the surface gravimetric data which does not inherit density depth resolution. In other words, the
disturbing masses may be situated on various depths and give the same outcome which are gravimetric anomalies on
the surface. To overcome this difficulty, various techniques are used. Li and Oldenburg [15] suggested the approach



that will be used in the presented solution. It requires a supplement condition to be put on the determined densities
dτ :

( ) min== dτWdτ τ
T

m τφ (20)

Where τW  is the model weighting matrix, the purpose of which is to strengthen or to weaken the influence of the
designated values in various regions of the model domain on the data values. Introducing the condition (20) gives
certain control over the inversion process. The authors suggest establishing the weight values by using the function
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where functions zyxS wwww ,,,  are spatially dependent weighting functions, zyxS αααα ,,,  are coefficients that

determine the relative importance of different components in the function ( )τφm  and ( )zw  is a depth weighting
function.

The most important is a depth weighting function ( )zw , which, according to the authors, should have the following
form for gravimetric data :
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where β  should be in the range of 0.25.1 ≤< β  and 0z  depends on cell size of the model discretization and the
data height.

Recording the condition (20) for the whole vector of the unknown, the unknown polynomial coefficients  (10) have
to be included in the vector. The  aW  model weighting matrix will be assigned to these coefficients and the
condition (20) will be now written as:
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Least square objective function can now be written as:
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The equation set (18), including the condition (24) is solved in the following way:
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It has to be mentioned that this solution may be found in the iteration process.



TEST CALCULATIONS
The object and test data
The test calculations were performed in the part of Lower Silesia region. The area of elaboration spreads from the
southern borderline of Poland to the parallel of the latitude '3051o  (about 155 km) and from the meridian o16  to
the meridian o18  (about 142 km). Mostly, this is a low-lying area. The southern part of the area contains partially the
Sudetes Foreland and the Sudetes Mountains. To perform the calculations, a right-rectangular coordinate system was
introduced. The origin of the reference is handled at the point oo LB 17,8.50 ==  (approximately in the centre of
the elaborated area). The XY plane is tangent to the geoid and the Z-axis is directed to the Zenith.

For the purpose of calculations 7964 points were used with previously measured gravity that referred to the
International Gravity Standardization Network 1971 (IGSN71), available from the Polish Geological Institute as
well as 26 points of the POLREF network, with known both ellipsoidal and normal heights. Figure 3 shows
locations of the POLREF network points in the terrain. Inside the area marked with the dashed line, gravimetric data
applied in the calculations were situated.
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Fig. 3. Location of gravity points and the POLREF network points

The  Ω  region for all test calculations went about 20 km behind the area where the results of gravity measurements
had been given. This area is shown on the Fig. 3. The region was divided into 1600 zones of constant density of
topographic masses. A particular zone was the rectangle at the size of ca. 5 × 4.3 km. The κ  region was defined as
the set of rectangular prisms that constitute the layer that has the constant depth of 32 km (the average depth of the
compensation surface in the Lower Silesia region [6]). Single cell of the κ  region corresponded to the appropriate
zone of the Ω region by its horizontal size and position. For each gravity point, gravity disturbance was calculated
with the use of approximated quasi-geoid model, built on the base of the POLREF network points. Therefore
observation equations for gravity data were built according to the equation (16).
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The accuracy of height anomalies determination and the assessment of minimal density of points
with the designated GPS/levelling heights
First, the series of 26 calculations was taken. In each calculation set, one of the POLREF points was taken as the
unknown and the other 25 points were treated as data points. Such approach was implemented to assure a minimal
distance between unknown and known points. In calculation the DTM at density of 500 m was used.
Figure 4 presents ζd  differences in centimetres, between quasi-geoid heights calculated from the model and its
“theoretical” heights, for each of 26 points. The largest differences appear at points situated close to the border of
the elaboration area. Reducing the accuracy of height anomalies determination near the border of the area from
which the data was extracted is the expected phenomena and is called the edge effect. The size of the edge effect
confirms the usefulness of the suggested area. In the Figure 4, the area where the edge effect is significant was
separated by a green dashed line and constitutes the external part of the whole area. The internal part defines a
certain sub-area, in which the calculated height anomalies are very close to their “theoretical” values. The sub-area
will be called the area of the suggested method efficiency. Points situated inside the efficiency area may be used for
estimating the precision of the method.

Fig. 4. ζd  differences between quasi-geoid heights calculated from the model and its “theoretical” values, in centimetres

Accuracy parameters determined on the strength of ζd  differences for these points are presented in the Table 1 and
indicated as the variant V1.

Table 1. Accuracy parameters in centimetres for the variant V1
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To sum up the presented results briefly, we have to emphasis the high accuracy of the determined height anomalies.
We must notice that the test calculations refer to the POLREF network points. The accuracy of height anomalies of
that points is estimated at the level of cmmH 2±≅ζ  [13]. As far as the mean square error is concerned, the gained
outcomes are on the accuracy level of GPS/levelling height anomalies of the POLREF network points. Such results
were obtained using gravimetric data from the region that goes only 15 km behind the efficiency area. It shows there
is only slight edge effect of the presented approach.
In the framework of the second calculation test, the case where the distance between known points is larger can be
analysed. From several series of calculations such a variant was chosen where the number of known GPS/levelling
points is minimal and the results are as good as in the previous test. Increasing the number of the known points does
not influence the results greatly but reducing the number of these points decreases the model accuracy. Finally, eight
points of the POLREF network were taken as the data points and the other points were treated as test points. The
Figure 5 presents a location of the data and test points and the results of test calculations described as ζd difference.

Fig. 5. The location of the data and test points as well as the differences ζd  between quasi-geoid heights calculated from

            the model and its “theoretical” values, in centimetres (variant V2)

As it may be noticed in the Fig. 5 the majority of data points is situated outside the efficiency area. This area has not
been changed. As in the previous case, for the purpose of calculations DTM with density of 500 m was used. The
parameters of the accuracy for this variant which were determined on the basis of differences ζd  are presented in
the Table 2 and indicated as V2.
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Table 2. Accuracy parameters in centimetres determined for the variant V2

V2
[ ]cm

DTM resolution [m] 500
maximal error value ζdmax 3.0
mean square error

n

d
m ∑=

2
ζ

ζ
1.7

mean error 
n

d
m ∑=

ζ
ζ

1.4

On the basis of Fig. 5 the maximum distance between data points may be evaluated as 50-60 km. However, there are
particular requirements for the localization of these points: points which have their anomalies determined have to be
situated among data points. It will be also reflected in the results of test calculations presented in the further part of
this paper.

The evaluation of DTM resolution influence on the accuracy of height anomalies determination
To evaluate DTM resolution influence on the interpolation results the additional calculations were made for data and
test points situated as it is shown in the Fig. 5 (variant V2). For the purpose of calculations, DTM with density of
150, 250, 500, 750 and 1000 m was used. Accuracy parameters determined for specific resolutions are presented in
the Table 3.

Table 3. Accuracy parameters in centimetres determined for various  DTM resolutions

V3
[ ]cm

DTM resolution [m] 150 250 500 750 1000
maximal error value ζdmax 3.1 3.4 3.0 2.8 2.6
mean square error

n

d
m ∑=

2
ζ

ζ
1.7 1.8 1.7 1.7 1.7

mean error 
n

d
m ∑=

ζ
ζ

1.4 1.4 1.4 1.4 1.4

We have to mention that the original DTM was the model with resolution of 150 m. On the strength of this model,
DTM nets with other resolutions were generated.
The results got for the analyzed area presented in the Table 3 show that the DTM resolution in the range of 150m to
1000m does not influence the determined height anomalies. However, we have to notice that this area is mainly low
lying and only its small part may be considered as a piedmont or mountainous region, where the significant
influences can be expected.

The assessment of the accuracy of height anomalies determination for points situated near the
border of the elaboration area (edge effect)
In the computation of variants V2 and V3 data points are situated near the elaboration area border. Therefore, the
edge effect can not be assessed when the minimal number of data points is used. For the proper evaluation, data
points were moved close to the centre of elaboration area so that the test points were situated outside the efficiency
area. Figure 6 presents the location of data and test points as well as the results of calculations for DTM with the
resolution of 500 m.
Shifting data points in this case caused the change of the efficiency area border. It is presented explicitly that the
points on which height anomalies are determined should be situated among data points. On the basis of these
computations we may assess not only accuracy parameters for points situated inside the efficiency area, but also
such parameters for points lying outside the efficiency area.



Fig. 6. The location of data and test points and ζd  differences between quasi-geoid heights calculated from the model

             and its “theoretical” values, in centimetres (variant V4)

Accuracy parameters for the both groups of points are shown in the Table 4. These values were determined for
variant V1 and for the setting of data and test points as shown in the Fig. 6.  The outcomes of these computations are
given in the Table for and marked as the variant V4.

Table 4. Accuracy parameters in centimetres determined for points situated outside and inside the efficiency area

V1
[ ]cm

V4
[ ]cm

DTM resolution [m] 500 150 250 500 750 1000
in out in out in out in out in out in out

maximal error value

ζdmax 2.9 6.2 2.9 6.7 2.9 6.7 2.9 6.7 2.9 6.7 2.9 6.7

mean square error

n

d
m ∑=

2
ζ

ζ
1.7 4.9 1.4 4.5 1.5 4.7 1.5 4.7 1.5 4.6 1.5 4.5

mean error

n

d
m ∑=

ζ
ζ

1.5 4.7 1.2 4.2 1.2 4.5 1.2 4.5 1.2 4.4 1.2 4.3

Results in the Table 4 indicate that errors of height anomalies determination for points placed outside the efficiency
area are several times bigger than the errors of height anomalies determination for points lying inside this area. To
reduce this error, global geopotential model EGM96 was implemented to calculations by remove-restore method.
The outcomes of these computations for the DTM with density of 500 m are presented in the Figure 7.
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Fig. 7. The location of the data and test points and differences ζd  between quasi-geoid heights calculated from the model

            and its “theoretical” values with the use of EGM96 model, in centimetres (variant V4)

Table 5 shows accuracy characteristics of this variant of test calculations performed for various DTM densities. This
variant is called V5.

Table 5. Accuracy parameters in centimetres determined for points situated outside and inside the efficiency area using
               EGM96 model

V5
[ ]cm

DTM resolution [m] 150 250 500 750 1000
in out in out in out in out in out

maximal error

ζdmax 3.1 4.1 3.2 4.1 3.3 4.5 3.1 4.3 3.1 4.1

mean square error

n

d
m ∑=

2
ζ

ζ
1.6 2.8 1.6 2.7 1.6 2.9 1.6 3.0 1.6 2.8

mean error

n

d
m ∑=

ζ
ζ

1.3 2.5 1.3 2.4 1.3 2.5 1.3 2.6 1.3 2.5

The presented outcomes for the variants V4 and V5 first of all confirm the lack of significant influence of DTM in
the range of 150-1000m on the results obtained for the investigated area. Furthermore, applying global geopotential
model practically does not influence the determined quasi-geoid heights inside the efficiency area in a considerable
way. On the other hand, it is crucial to reduce the edge effect. In the rendered example all errors have been reduced
approx. by 40%. It supports using global geopotential models in the suggested method.
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Determination of topographic masses density
The determined models of topographic masses density distribution were evaluated by comparing the results of test
calculations with the fragment of the map of rock slab density above the sea level, which was made in the scale
1:1000000 [12]. According to  authors, this map uses densities of topographic masses evaluated with the mean
standard deviation of ± 0.11 g·cm3. This map allowed to prepare the draft of topographic masses presented in the
Figure 8.

Figure 8 shows that the elaboration area with regard to topographic masses density may be divided into two parts,
i.e. mountainous part which has higher density and low lying part with lower density. Parts are separated by the line
of the Sudetes border fault line. On the north-east, low side of the fault the regions with high density prevail and
they encompass Ślęża Massif, western part of Niemcza-Strzelin Hills (south-east of Strzelin) and Strzegom
precincts.

Fig. 8. The draft of the topographic masses density made on the basis of the map of density of rock slab above sea
             level  [12]

Test computations were made for two variants. For both variants the reference density model for the κ  area
amounted 3

0 cmg0 ⋅=κτ  and for Ω area it was 3
0 cmg20.2 ⋅=Ωτ . This value is close to the average density of

topographic masses for Poland which is estimated as 3cmg17.2 ⋅  [12]. These two variants differ in some parameters

that define weight matrix τW . DM1  variant assumes that weights for Ω  area are the same for each zone. Due to
the fact that the whole area was divided into 1600 zones that differ only in the terrain altitude, in order to determine
weights for this variant the equal height of all zones was adopted and it was evaluated as the average height of the
terrain on the tested area. DM2 variant on the contrary allows for differences in the terrain altitude in the each zone
of Ω area. For this reason, weights are different for each zone.
Regarding the same sizes and depth of location of the κ area components, weights for the each component of the
area will be the same.
Figure 9 renders a density model determined for DM1 variant. In calculations, the following, remaining values of

the function ( )τφm  were used: 1=== zyx www  and 
⎩
⎨
⎧ Ω

=
κfor

for
wS 000025.0

00001.0
, the coefficients

0=== zyx ααα  and 00001.0=Sα , 2=β , mz 5000 = . Such way of weighting and the values of the

function component presented above ( )τφm  were used in all calculations whose results are presented above.
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Fig. 9. The determined densities of tropospheric masses after accepting the same heights for all the zones in the Ω  area
            for the weight function (DM1 variant)

Comparing Figures 8 and 9, we may notice that the greatest changes of topographic masses density in the Sudetes
region, Ślęża Massif and Niemcza-Srzelin Hills were spotted in the modelling process. However, the determined
densities feature much higher density than the theoretical values of density. Locally, they also diverge from them
(e.g. in the southern part of Kłodzko Valley). The line of Sudetes border fault that separates flat areas with lower
density from mountainous terrains with the much higher density and which is very evident in the Figure 8, is hardy
noticeable in the Figure 9. For the low lying areas (Wroclaw precincts), where the density of topographic masses
only slightly differs from the adopted reference density model, the determined densities in principle do not reflect
the theoretical densities.
In the case of DM2 variant various terrain altitudes of each zone were taken into account . Implementing different
heights to weight function calculations also required the modification of other components of the ( )τφm  function.

The calculations for DM2 were made taking the following assumptions: the functions 1=== zyx www  and

⎩
⎨
⎧ Ω

=
κfor

for
wS 013.0

002.0
, the coefficients 0=== zyx ααα  and 00001.0=Sα , 2=β , mz 50000 = .

The density model determined for this variant is presented in the Figure 10.

Comparing Figures 9 and 10 we may claim that including various terrain heights of zones within the Ω area in the
weight function, did not considerably influence the results of modelling. Therefore, it is not important for the testing
area.
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Fig. 10. The determined densities of topographic masses including zone height differences  in the Ω region for the weight
              function (variant DM2)

Moreover, the fragment of the map of density of the rock slab above the sea level presented in the Figure 8 was
digitized. Digital data collected in this process allowed to compute mean density errors for each of the variants.

These errors were calculated according to the formula 
( )
n

m ∑ ∆
=Ω

2τ
τ

, where τ∆  is the difference of the

determined and theoretical density (received from map digitization) for each zone and n is the number of zones.
These errors are shown in the Table 6.

Table 6. Errors of determined topographic masses densities in 3/ cmg

Variant DM1 DM2 Constant
density (2.20)

n
m ∑∆

=Ω

2τ
τ

0.145 0.153 0.194

The last column of the Table 6 includes Ωτm  error for the reference density model 3
0 cmg20.2 ⋅=Ωτ .

The accuracy parameters presented in the Table 6 confirm the deficiency of significant discrepancy between DM1
and DM2 variants.
To summarise this part of test calculations briefly, I would like to emphasise that data on topographic masses
densities which I applied here come from the map in the scale of  1:1000000. This map was drawn using densities
determined with the precision of 3cmg11.0 ⋅± . Such data allow to make only general evaluation of the results of
densities modelling. This evaluation states clearly that the applied disturbing potential model facilitates interpolation
of height anomalies with the simultaneous modelling of topographic masses densities mainly in the mountainous
areas. To determine the accuracies of densities determination in an unambiguous way, the further analyses have to
be made both on theoretical and real data.
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CONCLUSIONS

This work presents the method for local determination of quasi-geoid heights which uses not reduced data. Such
approach allows to omit the influence of determined corrections inaccuracies and reductions that are implemented to
the input data on the final outcome of calculations. Although it uses DTM data which are the source of topographic
correction commonly introduced in the classical methods, in fact the model quality requirements seem to be much
lower. The influence of DTM with the resolution of m150150 ×  up to m10001000 ×  on the determined height
anomalies have not been proven for the tested area. But we still have to take into account that the tested area is
mainly low lying and only in parts it covers piedmont and low mountains terrains. Because the greatest influence of
DTM accuracy on the calculation results is expected in the mountainous areas, the presented results should be
verified in the area that is in total mountainous.

The test calculations showed the high accuracy of height anomalies determined by this method. For the tested area
agreement of the modeled quasi-geoid heights with GPS/leveling designations was reached at the level of cm7.1±
(mean square error). It should be noticed that gravity data used for the calculations covers only a small elaboration
area (Figure 3), and good results were obtained just about 15 km from its border (small edge effect). It is an
interesting property which particularly supports such solution in case of lack of the gravity data in the large regions
outside the area of interest, which is needed in Stokes integration method (e.g. for border areas).

The suggested method uses various surveying data. The basis of calculations are still gravimetric data, GPS/levelling
height anomalies and digital terrain model. It limits the scope of using this method to the areas for which such data
are available. The situation of points with the known GPS/levelling heights is crucial. The highest accuracy of height
anomalies determination is reached on the area where the known points are situated. In order to increase the
interpolation precision for the points located outside this area, it is effective to use the global geopotential model in
the remove-compute-restore technology.

To summarise this part of work which is connected with topographic masses densities modelling, we have to
mention that for the purpose of researches the test data were used. They were taken from  the map of density of the
rock slab above the sea level in the scale of 1:1000000. The test data  allow to make only general evaluation of
densities modelling results. This evaluation shows that the suggested solution permits height anomalies
determination with simultaneous modelling of topographic masses densities. However, unequivocal evaluation of
accuracies determined with this method requires further analyses that use more precise test data.

Finally, it is worth mentioning that discretizing density functions ρ  and δ  and selection of various weight

functions ( )zw , facilitates generation of many variants of disturbing potential model. It indicates the necessity of
conducting wider and more precise researches of the rendered solution.
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